Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
/**
* Structures and methods with information about XPCOM interfaces for use by
* XPConnect. The static backing data structures used by this file are generated
* from xpidl interfaces by the jsonxpt.py and xptcodegen.py scripts.
*/
#ifndef xptinfo_h
#define xptinfo_h
#include <stdint.h>
#include "nsID.h"
#include "mozilla/Assertions.h"
#include "jsapi.h"
#include "js/Symbol.h"
#include "js/Value.h"
#include "nsString.h"
#include "nsTArray.h"
// Forward Declarations
namespace mozilla {
namespace dom {
struct NativePropertyHooks;
} // namespace dom
} // namespace mozilla
struct nsXPTInterfaceInfo;
struct nsXPTType;
struct nsXPTParamInfo;
struct nsXPTMethodInfo;
struct nsXPTConstantInfo;
struct nsXPTDOMObjectInfo;
enum class nsXPTInterface : uint16_t;
// Internal helper methods.
namespace xpt {
namespace detail {
inline const nsXPTInterfaceInfo* GetInterface(uint16_t aIndex);
inline const nsXPTType& GetType(uint16_t aIndex);
inline const nsXPTParamInfo& GetParam(uint16_t aIndex);
inline const nsXPTMethodInfo& GetMethod(uint16_t aIndex);
inline const nsXPTConstantInfo& GetConstant(uint16_t aIndex);
inline const nsXPTDOMObjectInfo& GetDOMObjectInfo(uint16_t aIndex);
inline const char* GetString(uint32_t aIndex);
const nsXPTInterfaceInfo* InterfaceByIID(const nsIID& aIID);
const nsXPTInterfaceInfo* InterfaceByName(const char* aName);
extern const uint16_t sInterfacesSize;
} // namespace detail
} // namespace xpt
/*
* An Interface describes a single XPCOM interface, including all of its
* methods. We don't record non-scriptable interfaces.
*/
struct nsXPTInterfaceInfo {
// High efficiency getters for Interfaces based on perfect hashes.
static const nsXPTInterfaceInfo* ByIID(const nsIID& aIID) {
return xpt::detail::InterfaceByIID(aIID);
}
static const nsXPTInterfaceInfo* ByName(const char* aName) {
return xpt::detail::InterfaceByName(aName);
}
static const nsXPTInterfaceInfo* Get(nsXPTInterface aID) {
return ByIndex(uint16_t(aID));
}
// These are only needed for Components_interfaces's enumerator.
static const nsXPTInterfaceInfo* ByIndex(uint16_t aIndex) {
// NOTE: We add 1 here, as the internal index 0 is reserved for null.
return xpt::detail::GetInterface(aIndex + 1);
}
static uint16_t InterfaceCount() { return xpt::detail::sInterfacesSize; }
// Interface flag getters
bool IsFunction() const { return mFunction; }
bool IsBuiltinClass() const { return mBuiltinClass; }
bool IsMainProcessScriptableOnly() const {
return mMainProcessScriptableOnly;
}
const char* Name() const { return xpt::detail::GetString(mName); }
const nsIID& IID() const { return mIID; }
// Get the parent interface, or null if this interface doesn't have a parent.
const nsXPTInterfaceInfo* GetParent() const {
return xpt::detail::GetInterface(mParent);
}
// Do we have an ancestor interface with the given IID?
bool HasAncestor(const nsIID& aIID) const;
// Get methods & constants
uint16_t ConstantCount() const { return mNumConsts; }
const nsXPTConstantInfo& Constant(uint16_t aIndex) const;
uint16_t MethodCount() const { return mNumMethods; }
const nsXPTMethodInfo& Method(uint16_t aIndex) const;
nsresult GetMethodInfo(uint16_t aIndex, const nsXPTMethodInfo** aInfo) const;
nsresult GetConstant(uint16_t aIndex, JS::MutableHandle<JS::Value> constant,
char** aName) const;
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
nsID mIID;
uint32_t mName; // Index into xpt::detail::sStrings
uint16_t mParent : 14;
uint16_t mBuiltinClass : 1;
// XXX(nika): Do we need this if we don't have addons anymore?
uint16_t mMainProcessScriptableOnly : 1;
uint16_t mMethods; // Index into xpt::detail::sMethods
uint16_t mConsts : 14; // Index into xpt::detail::sConsts
uint16_t mFunction : 1;
// uint16_t unused : 1;
uint8_t mNumMethods; // NOTE(24/04/18): largest=nsIDocShell (193)
uint8_t mNumConsts; // NOTE(24/04/18): largest=nsIAccessibleRole (175)
};
// The fields in nsXPTInterfaceInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTInterfaceInfo) == 28, "wrong size?");
/*
* The following enum represents contains the different tag types which
* can be found in nsXPTTypeInfo::mTag.
*
* WARNING: mTag is 5 bits wide, supporting at most 32 tags.
*/
enum nsXPTTypeTag : uint8_t {
// Arithmetic (POD) Types
// - Do not require cleanup,
// - All bit patterns are valid,
// - Outparams may be uninitialized by caller,
// - Directly supported in xptcall.
//
// NOTE: The name 'Arithmetic' comes from Harbison/Steele. Despite being a tad
// unclear, it is used frequently in xptcall, so is unlikely to be changed.
TD_INT8 = 0,
TD_INT16 = 1,
TD_INT32 = 2,
TD_INT64 = 3,
TD_UINT8 = 4,
TD_UINT16 = 5,
TD_UINT32 = 6,
TD_UINT64 = 7,
TD_FLOAT = 8,
TD_DOUBLE = 9,
TD_BOOL = 10,
TD_CHAR = 11,
TD_WCHAR = 12,
_TD_LAST_ARITHMETIC = TD_WCHAR,
// Pointer Types
// - Require cleanup unless NULL,
// - All-zeros (NULL) bit pattern is valid,
// - Outparams may be uninitialized by caller,
// - Supported in xptcall as raw pointer.
TD_VOID = 13,
TD_NSIDPTR = 14,
TD_PSTRING = 15,
TD_PWSTRING = 16,
TD_INTERFACE_TYPE = 17,
TD_INTERFACE_IS_TYPE = 18,
TD_LEGACY_ARRAY = 19,
TD_PSTRING_SIZE_IS = 20,
TD_PWSTRING_SIZE_IS = 21,
TD_DOMOBJECT = 22,
TD_PROMISE = 23,
_TD_LAST_POINTER = TD_PROMISE,
// Complex Types
// - Require cleanup,
// - Always passed indirectly,
// - Outparams must be initialized by caller,
// - Supported in xptcall due to indirection.
TD_UTF8STRING = 24,
TD_CSTRING = 25,
TD_ASTRING = 26,
TD_NSID = 27,
TD_JSVAL = 28,
TD_ARRAY = 29,
_TD_LAST_COMPLEX = TD_ARRAY
};
static_assert(_TD_LAST_COMPLEX < 32, "nsXPTTypeTag must fit in 5 bits");
/*
* A nsXPTType is a union used to identify the type of a method argument or
* return value. The internal data is stored as an 5-bit tag, and two 8-bit
* integers, to keep alignment requirements low.
*
* nsXPTType contains 3 extra bits, reserved for use by nsXPTParamInfo.
*/
struct nsXPTType {
nsXPTTypeTag Tag() const { return static_cast<nsXPTTypeTag>(mTag); }
// The index in the function argument list which should be used when
// determining the iid_is or size_is properties of this dependent type.
uint8_t ArgNum() const {
MOZ_ASSERT(Tag() == TD_INTERFACE_IS_TYPE || Tag() == TD_PSTRING_SIZE_IS ||
Tag() == TD_PWSTRING_SIZE_IS || Tag() == TD_LEGACY_ARRAY);
return mData1;
}
private:
// Helper for reading 16-bit data values split between mData1 and mData2.
uint16_t Data16() const {
return static_cast<uint16_t>(mData1 << 8) | mData2;
}
public:
// Get the type of the element in the current array or sequence. Arrays only
// fit 8 bits of type data, while sequences support up to 16 bits of type data
// due to not needing to store an ArgNum.
const nsXPTType& ArrayElementType() const {
if (Tag() == TD_LEGACY_ARRAY) {
return xpt::detail::GetType(mData2);
}
MOZ_ASSERT(Tag() == TD_ARRAY);
return xpt::detail::GetType(Data16());
}
// We store the 16-bit iface value as two 8-bit values in order to
// avoid 16-bit alignment requirements for XPTTypeDescriptor, which
// reduces its size and also the size of XPTParamDescriptor.
const nsXPTInterfaceInfo* GetInterface() const {
MOZ_ASSERT(Tag() == TD_INTERFACE_TYPE);
return xpt::detail::GetInterface(Data16());
}
const nsXPTDOMObjectInfo& GetDOMObjectInfo() const {
MOZ_ASSERT(Tag() == TD_DOMOBJECT);
return xpt::detail::GetDOMObjectInfo(Data16());
}
// See the comments in nsXPTTypeTag for an explanation as to what each of
// these categories mean.
bool IsArithmetic() const { return Tag() <= _TD_LAST_ARITHMETIC; }
bool IsPointer() const {
return !IsArithmetic() && Tag() <= _TD_LAST_POINTER;
}
bool IsComplex() const { return Tag() > _TD_LAST_POINTER; }
bool IsInterfacePointer() const {
return Tag() == TD_INTERFACE_TYPE || Tag() == TD_INTERFACE_IS_TYPE;
}
bool IsDependent() const {
return (Tag() == TD_ARRAY && InnermostType().IsDependent()) ||
Tag() == TD_INTERFACE_IS_TYPE || Tag() == TD_LEGACY_ARRAY ||
Tag() == TD_PSTRING_SIZE_IS || Tag() == TD_PWSTRING_SIZE_IS;
}
// Unwrap a nested type to its innermost value (e.g. through arrays).
const nsXPTType& InnermostType() const {
if (Tag() == TD_LEGACY_ARRAY || Tag() == TD_ARRAY) {
return ArrayElementType().InnermostType();
}
return *this;
}
// In-memory size of native type in bytes.
inline size_t Stride() const;
// Offset the given base pointer to reference the element at the given index.
void* ElementPtr(const void* aBase, uint32_t aIndex) const {
return (char*)aBase + (aIndex * Stride());
}
// Zero out a native value of the given type. The type must not be 'complex'.
void ZeroValue(void* aValue) const {
MOZ_RELEASE_ASSERT(!IsComplex(), "Cannot zero a complex value");
memset(aValue, 0, Stride());
}
// Indexes into the extra types array of a small set of known types.
enum class Idx : uint8_t {
INT8 = 0,
UINT8,
INT16,
UINT16,
INT32,
UINT32,
INT64,
UINT64,
FLOAT,
DOUBLE,
BOOL,
CHAR,
WCHAR,
NSIDPTR,
PSTRING,
PWSTRING,
INTERFACE_IS_TYPE
};
// Helper methods for fabricating nsXPTType values used by xpconnect.
static nsXPTType MkArrayType(Idx aInner) {
MOZ_ASSERT(aInner <= Idx::INTERFACE_IS_TYPE);
return {TD_LEGACY_ARRAY, false, false, false, 0, (uint8_t)aInner};
}
static const nsXPTType& Get(Idx aInner) {
MOZ_ASSERT(aInner <= Idx::INTERFACE_IS_TYPE);
return xpt::detail::GetType((uint8_t)aInner);
}
///////////////////////////////////////
// nsXPTType backwards compatibility //
///////////////////////////////////////
nsXPTType& operator=(nsXPTTypeTag aPrefix) {
mTag = aPrefix;
return *this;
}
operator nsXPTTypeTag() const { return Tag(); }
#define TD_ALIAS_(name_, value_) static constexpr nsXPTTypeTag name_ = value_
TD_ALIAS_(T_I8, TD_INT8);
TD_ALIAS_(T_I16, TD_INT16);
TD_ALIAS_(T_I32, TD_INT32);
TD_ALIAS_(T_I64, TD_INT64);
TD_ALIAS_(T_U8, TD_UINT8);
TD_ALIAS_(T_U16, TD_UINT16);
TD_ALIAS_(T_U32, TD_UINT32);
TD_ALIAS_(T_U64, TD_UINT64);
TD_ALIAS_(T_FLOAT, TD_FLOAT);
TD_ALIAS_(T_DOUBLE, TD_DOUBLE);
TD_ALIAS_(T_BOOL, TD_BOOL);
TD_ALIAS_(T_CHAR, TD_CHAR);
TD_ALIAS_(T_WCHAR, TD_WCHAR);
TD_ALIAS_(T_VOID, TD_VOID);
TD_ALIAS_(T_NSIDPTR, TD_NSIDPTR);
TD_ALIAS_(T_CHAR_STR, TD_PSTRING);
TD_ALIAS_(T_WCHAR_STR, TD_PWSTRING);
TD_ALIAS_(T_INTERFACE, TD_INTERFACE_TYPE);
TD_ALIAS_(T_INTERFACE_IS, TD_INTERFACE_IS_TYPE);
TD_ALIAS_(T_LEGACY_ARRAY, TD_LEGACY_ARRAY);
TD_ALIAS_(T_PSTRING_SIZE_IS, TD_PSTRING_SIZE_IS);
TD_ALIAS_(T_PWSTRING_SIZE_IS, TD_PWSTRING_SIZE_IS);
TD_ALIAS_(T_UTF8STRING, TD_UTF8STRING);
TD_ALIAS_(T_CSTRING, TD_CSTRING);
TD_ALIAS_(T_ASTRING, TD_ASTRING);
TD_ALIAS_(T_NSID, TD_NSID);
TD_ALIAS_(T_JSVAL, TD_JSVAL);
TD_ALIAS_(T_DOMOBJECT, TD_DOMOBJECT);
TD_ALIAS_(T_PROMISE, TD_PROMISE);
TD_ALIAS_(T_ARRAY, TD_ARRAY);
#undef TD_ALIAS_
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
uint8_t mTag : 5;
// Parameter bitflags are packed into the XPTTypeDescriptor to save space.
// When the TypeDescriptor is not in a parameter, these flags are ignored.
uint8_t mInParam : 1;
uint8_t mOutParam : 1;
uint8_t mOptionalParam : 1;
// The data for the different variants is stored in these two data fields.
// These should only be accessed via the getter methods above, which will
// assert if the tag is invalid.
uint8_t mData1;
uint8_t mData2;
};
// The fields in nsXPTType were carefully ordered to minimize size.
static_assert(sizeof(nsXPTType) == 3, "wrong size");
/*
* A nsXPTParamInfo is used to describe either a single argument to a method or
* a method's result. It stores its flags in the type descriptor to save space.
*/
struct nsXPTParamInfo {
bool IsIn() const { return mType.mInParam; }
bool IsOut() const { return mType.mOutParam; }
bool IsOptional() const { return mType.mOptionalParam; }
bool IsShared() const { return false; } // XXX remove (backcompat)
// Get the type of this parameter.
const nsXPTType& Type() const { return mType; }
const nsXPTType& GetType() const {
return Type();
} // XXX remove (backcompat)
// Whether this parameter is passed indirectly on the stack. All out/inout
// params are passed indirectly, and complex types are always passed
// indirectly.
bool IsIndirect() const { return IsOut() || Type().IsComplex(); }
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
nsXPTType mType;
};
// The fields in nsXPTParamInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTParamInfo) == 3, "wrong size");
/*
* A nsXPTMethodInfo is used to describe a single interface method.
*/
struct nsXPTMethodInfo {
bool IsGetter() const { return mGetter; }
bool IsSetter() const { return mSetter; }
bool IsReflectable() const { return mReflectable; }
bool IsSymbol() const { return mIsSymbol; }
bool WantsOptArgc() const { return mOptArgc; }
bool WantsContext() const { return mContext; }
uint8_t ParamCount() const { return mNumParams; }
const char* Name() const {
MOZ_ASSERT(!IsSymbol());
return xpt::detail::GetString(mName);
}
const nsXPTParamInfo& Param(uint8_t aIndex) const {
MOZ_ASSERT(aIndex < mNumParams);
return xpt::detail::GetParam(mParams + aIndex);
}
bool HasRetval() const { return mHasRetval; }
const nsXPTParamInfo* GetRetval() const {
return mHasRetval ? &Param(mNumParams - 1) : nullptr;
}
// If this is an [implicit_jscontext] method, returns the index of the
// implicit JSContext* argument in the C++ method's argument list.
// Otherwise returns UINT8_MAX.
uint8_t IndexOfJSContext() const {
if (!WantsContext()) {
return UINT8_MAX;
}
if (IsGetter() || IsSetter()) {
// Getters/setters always have the context as first argument.
return 0;
}
// The context comes before the return value, if there is one.
MOZ_ASSERT_IF(HasRetval(), ParamCount() > 0);
return ParamCount() - uint8_t(HasRetval());
}
JS::SymbolCode GetSymbolCode() const {
MOZ_ASSERT(IsSymbol());
return JS::SymbolCode(mName);
}
JS::Symbol* GetSymbol(JSContext* aCx) const {
return JS::GetWellKnownSymbol(aCx, GetSymbolCode());
}
const char* SymbolDescription() const;
const char* NameOrDescription() const {
if (IsSymbol()) {
return SymbolDescription();
}
return Name();
}
bool GetId(JSContext* aCx, jsid& aId) const;
/////////////////////////////////////////////
// nsXPTMethodInfo backwards compatibility //
/////////////////////////////////////////////
const char* GetName() const { return Name(); }
uint8_t GetParamCount() const { return ParamCount(); }
const nsXPTParamInfo& GetParam(uint8_t aIndex) const { return Param(aIndex); }
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
uint32_t mName; // Index into xpt::detail::sStrings.
uint16_t mParams; // Index into xpt::detail::sParams.
uint8_t mNumParams;
uint8_t mGetter : 1;
uint8_t mSetter : 1;
uint8_t mReflectable : 1;
uint8_t mOptArgc : 1;
uint8_t mContext : 1;
uint8_t mHasRetval : 1;
uint8_t mIsSymbol : 1;
};
// The fields in nsXPTMethodInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTMethodInfo) == 8, "wrong size");
// This number is chosen to be no larger than the maximum number of parameters
// any XPIDL-defined function needs; there is a static assert in the generated
// code from xptcodegen.py to verify that decision. It is therefore also the
// maximum number of stack allocated nsXPTCMiniVariant structures for argument
// passing purposes in PrepareAndDispatch implementations.
#if defined(MOZ_THUNDERBIRD) || defined(MOZ_SUITE)
# define PARAM_BUFFER_COUNT 18
#else
# define PARAM_BUFFER_COUNT 14
#endif
/**
* A nsXPTConstantInfo is used to describe a single interface constant.
*/
struct nsXPTConstantInfo {
const char* Name() const { return xpt::detail::GetString(mName); }
JS::Value JSValue() const {
if (mSigned || mValue <= uint32_t(INT32_MAX)) {
return JS::Int32Value(int32_t(mValue));
}
return JS::DoubleValue(mValue);
}
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
uint32_t mName : 31; // Index into xpt::detail::mStrings.
// Whether the value should be interpreted as a int32_t or uint32_t.
uint32_t mSigned : 1;
uint32_t mValue; // The value stored as a u32
};
// The fields in nsXPTConstantInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTConstantInfo) == 8, "wrong size");
/**
* Object representing the information required to wrap and unwrap DOMObjects.
*
* This object will not live in rodata as it contains relocations.
*/
struct nsXPTDOMObjectInfo {
nsresult Unwrap(JS::Handle<JS::Value> aHandle, void** aObj,
JSContext* aCx) const {
return mUnwrap(aHandle, aObj, aCx);
}
bool Wrap(JSContext* aCx, void* aObj,
JS::MutableHandle<JS::Value> aHandle) const {
return mWrap(aCx, aObj, aHandle);
}
void Cleanup(void* aObj) const { return mCleanup(aObj); }
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
nsresult (*mUnwrap)(JS::Handle<JS::Value> aHandle, void** aObj,
JSContext* aCx);
bool (*mWrap)(JSContext* aCx, void* aObj,
JS::MutableHandle<JS::Value> aHandle);
void (*mCleanup)(void* aObj);
};
namespace xpt {
namespace detail {
// The UntypedTArray type allows low-level access from XPConnect to nsTArray
// internals without static knowledge of the array element type in question.
class UntypedTArray : public nsTArray_base<nsTArrayFallibleAllocator,
nsTArray_RelocateUsingMemutils> {
public:
void* Elements() const { return static_cast<void*>(Hdr() + 1); }
// Changes the length and capacity to be at least large enough for aTo
// elements.
bool SetLength(const nsXPTType& aEltTy, uint32_t aTo) {
if (!EnsureCapacity<nsTArrayFallibleAllocator>(aTo, aEltTy.Stride())) {
return false;
}
if (mHdr != EmptyHdr()) {
mHdr->mLength = aTo;
}
return true;
}
// Free backing memory for the nsTArray object.
void Clear() {
if (mHdr != EmptyHdr() && !UsesAutoArrayBuffer()) {
nsTArrayFallibleAllocator::Free(mHdr);
}
mHdr = EmptyHdr();
}
};
//////////////////////////////////////////////
// Raw typelib data stored in const statics //
//////////////////////////////////////////////
// XPIDL information
extern const nsXPTInterfaceInfo sInterfaces[];
extern const nsXPTType sTypes[];
extern const nsXPTParamInfo sParams[];
extern const nsXPTMethodInfo sMethods[];
extern const nsXPTConstantInfo sConsts[];
extern const nsXPTDOMObjectInfo sDOMObjects[];
extern const char sStrings[];
//////////////////////////////////////
// Helper Methods for fetching data //
//////////////////////////////////////
inline const nsXPTInterfaceInfo* GetInterface(uint16_t aIndex) {
if (aIndex > 0 && aIndex <= sInterfacesSize) {
return &sInterfaces[aIndex - 1]; // 1-based as 0 is a marker.
}
return nullptr;
}
inline const nsXPTType& GetType(uint16_t aIndex) { return sTypes[aIndex]; }
inline const nsXPTParamInfo& GetParam(uint16_t aIndex) {
return sParams[aIndex];
}
inline const nsXPTMethodInfo& GetMethod(uint16_t aIndex) {
return sMethods[aIndex];
}
inline const nsXPTConstantInfo& GetConstant(uint16_t aIndex) {
return sConsts[aIndex];
}
inline const nsXPTDOMObjectInfo& GetDOMObjectInfo(uint16_t aIndex) {
return sDOMObjects[aIndex];
}
inline const char* GetString(uint32_t aIndex) { return &sStrings[aIndex]; }
} // namespace detail
} // namespace xpt
#define XPT_FOR_EACH_ARITHMETIC_TYPE(MACRO) \
MACRO(TD_INT8, int8_t) \
MACRO(TD_INT16, int16_t) \
MACRO(TD_INT32, int32_t) \
MACRO(TD_INT64, int64_t) \
MACRO(TD_UINT8, uint8_t) \
MACRO(TD_UINT16, uint16_t) \
MACRO(TD_UINT32, uint32_t) \
MACRO(TD_UINT64, uint64_t) \
MACRO(TD_FLOAT, float) \
MACRO(TD_DOUBLE, double) \
MACRO(TD_BOOL, bool) \
MACRO(TD_CHAR, char) \
MACRO(TD_WCHAR, char16_t)
#define XPT_FOR_EACH_POINTER_TYPE(MACRO) \
MACRO(TD_VOID, void*) \
MACRO(TD_NSIDPTR, nsID*) \
MACRO(TD_PSTRING, char*) \
MACRO(TD_PWSTRING, wchar_t*) \
MACRO(TD_INTERFACE_TYPE, nsISupports*) \
MACRO(TD_INTERFACE_IS_TYPE, nsISupports*) \
MACRO(TD_LEGACY_ARRAY, void*) \
MACRO(TD_PSTRING_SIZE_IS, char*) \
MACRO(TD_PWSTRING_SIZE_IS, wchar_t*) \
MACRO(TD_DOMOBJECT, void*) \
MACRO(TD_PROMISE, mozilla::dom::Promise*)
#define XPT_FOR_EACH_COMPLEX_TYPE(MACRO) \
MACRO(TD_UTF8STRING, nsCString) \
MACRO(TD_CSTRING, nsCString) \
MACRO(TD_ASTRING, nsString) \
MACRO(TD_NSID, nsID) \
MACRO(TD_JSVAL, JS::Value) \
MACRO(TD_ARRAY, xpt::detail::UntypedTArray)
#define XPT_FOR_EACH_TYPE(MACRO) \
XPT_FOR_EACH_ARITHMETIC_TYPE(MACRO) \
XPT_FOR_EACH_POINTER_TYPE(MACRO) \
XPT_FOR_EACH_COMPLEX_TYPE(MACRO)
inline size_t nsXPTType::Stride() const {
// Compute the stride to use when walking an array of the given type.
switch (Tag()) {
#define XPT_TYPE_STRIDE(tag, type) \
case tag: \
return sizeof(type);
XPT_FOR_EACH_TYPE(XPT_TYPE_STRIDE)
#undef XPT_TYPE_STRIDE
}
MOZ_CRASH("Unknown type");
}
#endif /* xptinfo_h */