Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright 2017 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wabt/c-writer.h"
#include <cctype>
#include <cinttypes>
#include <iterator>
#include <limits>
#include <map>
#include <set>
#include <string_view>
#include <vector>
#include "wabt/cast.h"
#include "wabt/common.h"
#include "wabt/ir.h"
#include "wabt/literal.h"
#include "wabt/sha256.h"
#include "wabt/stream.h"
#include "wabt/string-util.h"
#define INDENT_SIZE 2
#define UNIMPLEMENTED(x) printf("unimplemented: %s\n", (x)), abort()
// code to be inserted into the generated output
extern const char* s_header_top;
extern const char* s_header_bottom;
extern const char* s_source_includes;
extern const char* s_source_declarations;
extern const char* s_simd_source_declarations;
namespace wabt {
namespace {
struct Label {
Label(LabelType label_type,
const std::string& name,
const TypeVector& sig,
size_t type_stack_size,
size_t try_catch_stack_size,
bool used = false)
: label_type(label_type),
name(name),
sig(sig),
type_stack_size(type_stack_size),
try_catch_stack_size(try_catch_stack_size),
used(used) {}
bool HasValue() const { return !sig.empty(); }
LabelType label_type;
const std::string& name;
const TypeVector& sig;
size_t type_stack_size;
size_t try_catch_stack_size;
bool used = false;
};
struct LocalName {
explicit LocalName(const std::string& name) : name(name) {}
const std::string& name;
};
struct ParamName : LocalName {
using LocalName::LocalName;
ParamName(const Var& var) : LocalName(var.name()) {}
};
struct LabelName : LocalName {
using LocalName::LocalName;
};
struct GlobalName {
GlobalName(ModuleFieldType type, const std::string& name)
: type(type), name(name) {}
ModuleFieldType type;
const std::string& name;
};
struct ExternalPtr : GlobalName {
using GlobalName::GlobalName;
};
struct ExternalRef : GlobalName {
using GlobalName::GlobalName;
};
struct ExternalInstancePtr : GlobalName {
using GlobalName::GlobalName;
};
struct ExternalInstanceRef : GlobalName {
using GlobalName::GlobalName;
};
struct GotoLabel {
explicit GotoLabel(const Var& var) : var(var) {}
const Var& var;
};
struct LabelDecl {
explicit LabelDecl(const std::string& name) : name(name) {}
std::string name;
};
struct GlobalInstanceVar {
explicit GlobalInstanceVar(const Var& var) : var(var) {}
const Var& var;
};
struct StackVar {
explicit StackVar(Index index, Type type = Type::Any)
: index(index), type(type) {}
Index index;
Type type;
};
struct TypeEnum {
explicit TypeEnum(Type type) : type(type) {}
Type type;
};
struct SignedType {
explicit SignedType(Type type) : type(type) {}
Type type;
};
struct ResultType {
explicit ResultType(const TypeVector& types) : types(types) {}
const TypeVector& types;
};
struct TryCatchLabel {
TryCatchLabel(const std::string& name, size_t try_catch_stack_size)
: name(name), try_catch_stack_size(try_catch_stack_size), used(false) {}
std::string name;
size_t try_catch_stack_size;
bool used;
};
struct FuncTypeExpr {
const FuncType* func_type;
FuncTypeExpr(const FuncType* f) : func_type(f) {}
};
struct Newline {};
struct OpenBrace {};
struct CloseBrace {};
int GetShiftMask(Type type) {
// clang-format off
switch (type) {
case Type::I32: return 31;
case Type::I64: return 63;
default: WABT_UNREACHABLE; return 0;
}
// clang-format on
}
/*
* This function is the default behavior for name_to_output_file_index_. For
* single .c output, this function returns a vector filled with 0. For multiple
* .c outputs, this function sorts all non-imported functions in the module by
* their names, and then divides all non-imported functions into equal-sized
* buckets (# of non-imported functions / # of .c outputs) based on the sorting.
*/
static std::vector<size_t> default_name_to_output_file_index(
std::vector<Func*>::const_iterator func_begin,
std::vector<Func*>::const_iterator func_end,
size_t num_imports,
size_t num_streams) {
std::vector<size_t> result;
result.resize(std::distance(func_begin, func_end));
if (num_streams == 1) {
return result;
}
std::map<std::string, Index> sorted_functions;
size_t non_imported_funcs = result.size() - num_imports;
size_t bucket_size = non_imported_funcs / num_streams +
(non_imported_funcs % num_streams ? 1 : 0);
Index func_index = 0;
for (auto func = func_begin; func != func_end; func++) {
sorted_functions.insert({(*func)->name, func_index});
++func_index;
}
Index sorted_func_index = 0;
for (const auto& [func_name, index] : sorted_functions) {
bool is_import = index < num_imports;
if (!is_import) {
result.at(index) = sorted_func_index / bucket_size;
++sorted_func_index;
}
}
return result;
}
class CWriter {
public:
CWriter(std::vector<Stream*>&& c_streams,
Stream* h_stream,
Stream* h_impl_stream,
const char* header_name,
const char* header_impl_name,
const WriteCOptions& options)
: options_(options),
c_streams_(std::move(c_streams)),
h_stream_(h_stream),
h_impl_stream_(h_impl_stream),
header_name_(header_name),
header_impl_name_(header_impl_name) {
module_prefix_ = MangleModuleName(options_.module_name);
if (c_streams_.size() != 1 && options.name_to_output_file_index) {
name_to_output_file_index_ = options.name_to_output_file_index;
} else {
name_to_output_file_index_ = default_name_to_output_file_index;
}
}
Result WriteModule(const Module&);
private:
using SymbolSet = std::set<std::string>;
using SymbolMap = std::map<std::string, std::string>;
using StackTypePair = std::pair<Index, Type>;
using StackVarSymbolMap = std::map<StackTypePair, std::string>;
void WriteCHeader();
void WriteCSource();
size_t MarkTypeStack() const;
void ResetTypeStack(size_t mark);
Type StackType(Index) const;
void PushType(Type);
void PushTypes(const TypeVector&);
void DropTypes(size_t count);
void PushLabel(LabelType,
const std::string& name,
const FuncSignature&,
bool used = false);
const Label* FindLabel(const Var& var, bool mark_used = true);
bool IsTopLabelUsed() const;
void PopLabel();
static constexpr char MangleType(Type);
static constexpr char MangleField(ModuleFieldType);
static std::string MangleMultivalueTypes(const TypeVector&);
static std::string MangleTagTypes(const TypeVector&);
static std::string Mangle(std::string_view name, bool double_underscores);
static std::string MangleName(std::string_view);
static std::string MangleModuleName(std::string_view);
std::string ExportName(std::string_view module_name,
std::string_view export_name);
std::string ExportName(std::string_view export_name);
std::string ModuleInstanceTypeName() const;
static std::string ModuleInstanceTypeName(std::string_view module_name);
void ClaimName(SymbolSet& set,
SymbolMap& map,
char type_suffix,
std::string_view wasm_name,
const std::string& c_name);
std::string FindUniqueName(SymbolSet& set, std::string_view proposed_name);
std::string ClaimUniqueName(SymbolSet& set,
SymbolMap& map,
char type_suffix,
std::string_view wasm_name,
const std::string& proposed_c_name);
void DefineImportName(const Import* import,
std::string_view module_name,
std::string_view field_name);
void ReserveExportNames();
void ReserveExportName(std::string_view);
std::string DefineImportedModuleInstanceName(std::string_view name);
std::string DefineInstanceMemberName(ModuleFieldType, std::string_view);
std::string DefineGlobalScopeName(ModuleFieldType, std::string_view);
std::string DefineLocalScopeName(std::string_view name, bool is_label);
std::string DefineParamName(std::string_view);
std::string DefineLabelName(std::string_view);
std::string DefineStackVarName(Index, Type, std::string_view);
static void SerializeFuncType(const FuncType&, std::string&);
std::string GetGlobalName(ModuleFieldType, const std::string&) const;
std::string GetLocalName(const std::string&, bool is_label) const;
void Indent(int size = INDENT_SIZE);
void Dedent(int size = INDENT_SIZE);
void WriteIndent();
void WriteData(const char* src, size_t size);
void Writef(const char* format, ...);
template <typename T, typename U, typename... Args>
void Write(T&& t, U&& u, Args&&... args) {
Write(std::forward<T>(t));
Write(std::forward<U>(u));
Write(std::forward<Args>(args)...);
}
static const char* GetReferenceTypeName(const Type& type);
static const char* GetReferenceNullValue(const Type& type);
static const char* GetCTypeName(const Type& type);
const char* InternalSymbolScope() const;
enum class CWriterPhase {
Declarations,
Definitions,
};
void Write() {}
void Write(Newline);
void Write(OpenBrace);
void Write(CloseBrace);
void Write(uint64_t);
void Write(std::string_view);
void Write(const ParamName&);
void Write(const LabelName&);
void Write(const GlobalName&);
void Write(const ExternalPtr&);
void Write(const ExternalRef&);
void Write(const ExternalInstancePtr&);
void Write(const ExternalInstanceRef&);
void Write(Type);
void Write(SignedType);
void Write(TypeEnum);
void Write(const GotoLabel&);
void Write(const LabelDecl&);
void Write(const GlobalInstanceVar&);
void Write(const StackVar&);
void Write(const ResultType&);
void Write(const Const&);
void WriteInitExpr(const ExprList&);
void WriteInitExprTerminal(const Expr*);
std::string GenerateHeaderGuard() const;
void WriteSourceTop();
void WriteMultiCTop();
void WriteMultiCTopEmpty();
void WriteMultivalueTypes();
void WriteTagTypes();
void WriteFuncTypeDecls();
void WriteFuncTypes();
void Write(const FuncTypeExpr&);
void WriteTagDecls();
void WriteTags();
void ComputeUniqueImports();
void BeginInstance();
void WriteImports();
void WriteFuncDeclarations();
void WriteFuncDeclaration(const FuncDeclaration&, const std::string&);
void WriteImportFuncDeclaration(const FuncDeclaration&,
const std::string& module_name,
const std::string&);
void WriteCallIndirectFuncDeclaration(const FuncDeclaration&,
const std::string&);
void ComputeSimdScope();
void WriteHeaderIncludes();
void WriteV128Decl();
void WriteModuleInstance();
void WriteGlobals();
void WriteGlobal(const Global&, const std::string&);
void WriteGlobalPtr(const Global&, const std::string&);
void WriteMemories();
void WriteMemory(const std::string&);
void WriteMemoryPtr(const std::string&);
void WriteTables();
void WriteTable(const std::string&, const wabt::Type&);
void WriteTablePtr(const std::string&, const Table&);
void WriteTableType(const wabt::Type&);
void WriteDataInstances();
void WriteElemInstances();
void WriteGlobalInitializers();
void WriteDataInitializerDecls();
void WriteDataInitializers();
void WriteElemInitializerDecls();
void WriteElemInitializers();
void WriteElemTableInit(bool, const ElemSegment*, const Table*);
void WriteExports(CWriterPhase);
void WriteInitDecl();
void WriteFreeDecl();
void WriteGetFuncTypeDecl();
void WriteInit();
void WriteFree();
void WriteGetFuncType();
void WriteInitInstanceImport();
void WriteImportProperties(CWriterPhase);
void WriteFuncs();
void Write(const Func&);
void WriteParamsAndLocals();
void WriteParams(const std::vector<std::string>& index_to_name);
void WriteParamSymbols(const std::vector<std::string>& index_to_name);
void WriteParamTypes(const FuncDeclaration& decl);
void WriteLocals(const std::vector<std::string>& index_to_name);
void WriteStackVarDeclarations();
void Write(const ExprList&);
enum class AssignOp {
Disallowed,
Allowed,
};
void WriteSimpleUnaryExpr(Opcode, const char* op);
void WriteInfixBinaryExpr(Opcode,
const char* op,
AssignOp = AssignOp::Allowed);
void WritePrefixBinaryExpr(Opcode, const char* op);
void WriteSignedBinaryExpr(Opcode, const char* op);
void Write(const BinaryExpr&);
void Write(const CompareExpr&);
void Write(const ConvertExpr&);
void Write(const LoadExpr&);
void Write(const StoreExpr&);
void Write(const UnaryExpr&);
void Write(const TernaryExpr&);
void Write(const SimdLaneOpExpr&);
void Write(const SimdLoadLaneExpr&);
void Write(const SimdStoreLaneExpr&);
void Write(const SimdShuffleOpExpr&);
void Write(const LoadSplatExpr&);
void Write(const LoadZeroExpr&);
void Write(const Block&);
size_t BeginTry(const TryExpr& tryexpr);
void WriteTryCatch(const TryExpr& tryexpr);
void WriteTryDelegate(const TryExpr& tryexpr);
void Write(const Catch& c);
void WriteThrow();
void PushTryCatch(const std::string& name);
void PopTryCatch();
void PushFuncSection(std::string_view include_condition = "");
const WriteCOptions& options_;
const Module* module_ = nullptr;
const Func* func_ = nullptr;
Stream* stream_ = nullptr;
std::vector<Stream*> c_streams_;
Stream* h_stream_ = nullptr;
Stream* h_impl_stream_ = nullptr;
std::string header_name_;
std::string header_impl_name_;
Result result_ = Result::Ok;
int indent_ = 0;
bool should_write_indent_next_ = false;
int consecutive_newline_count_ = 0;
SymbolMap global_sym_map_;
SymbolMap local_sym_map_;
SymbolMap import_module_sym_map_;
StackVarSymbolMap stack_var_sym_map_;
SymbolSet global_syms_;
SymbolSet local_syms_;
SymbolSet import_syms_;
TypeVector type_stack_;
std::vector<Label> label_stack_;
std::vector<TryCatchLabel> try_catch_stack_;
std::string module_prefix_;
std::vector<const Import*> unique_imports_;
SymbolSet import_module_set_; // modules that are imported from
SymbolSet import_func_module_set_; // modules that funcs are imported from
std::vector<std::pair<std::string, MemoryStream>> func_sections_;
SymbolSet func_includes_;
std::vector<std::string> unique_func_type_names_;
std::function<std::vector<size_t>(std::vector<Func*>::const_iterator,
std::vector<Func*>::const_iterator,
size_t,
size_t)>
name_to_output_file_index_;
bool simd_used_in_header_;
};
// TODO: if WABT begins supporting debug names for labels,
// will need to avoid conflict between a label named "$Bfunc" and
// the implicit func label
static constexpr char kImplicitFuncLabel[] = "$Bfunc";
// These should be greater than any ModuleFieldType (used for MangleField).
static constexpr char kParamSuffix =
'a' + static_cast<char>(ModuleFieldType::Tag) + 1;
static constexpr char kLabelSuffix = kParamSuffix + 1;
static constexpr char kGlobalSymbolPrefix[] = "w2c_";
static constexpr char kLocalSymbolPrefix[] = "var_";
static constexpr char kAdminSymbolPrefix[] = "wasm2c_";
size_t CWriter::MarkTypeStack() const {
return type_stack_.size();
}
void CWriter::ResetTypeStack(size_t mark) {
assert(mark <= type_stack_.size());
type_stack_.erase(type_stack_.begin() + mark, type_stack_.end());
}
Type CWriter::StackType(Index index) const {
assert(index < type_stack_.size());
return *(type_stack_.rbegin() + index);
}
void CWriter::PushType(Type type) {
type_stack_.push_back(type);
}
void CWriter::PushTypes(const TypeVector& types) {
type_stack_.insert(type_stack_.end(), types.begin(), types.end());
}
void CWriter::DropTypes(size_t count) {
assert(count <= type_stack_.size());
type_stack_.erase(type_stack_.end() - count, type_stack_.end());
}
void CWriter::PushLabel(LabelType label_type,
const std::string& name,
const FuncSignature& sig,
bool used) {
if (label_type == LabelType::Loop)
label_stack_.emplace_back(label_type, name, sig.param_types,
type_stack_.size(), try_catch_stack_.size(),
used);
else
label_stack_.emplace_back(label_type, name, sig.result_types,
type_stack_.size(), try_catch_stack_.size(),
used);
}
const Label* CWriter::FindLabel(const Var& var, bool mark_used) {
Label* label = nullptr;
if (var.is_index()) {
// We've generated names for all labels, so we should only be using an
// index when branching to the implicit function label, which can't be
// named.
assert(var.index() + 1 == label_stack_.size());
label = &label_stack_[0];
} else {
assert(var.is_name());
for (Index i = label_stack_.size(); i > 0; --i) {
label = &label_stack_[i - 1];
if (label->name == var.name())
break;
}
}
assert(label);
if (mark_used) {
label->used = true;
}
return label;
}
bool CWriter::IsTopLabelUsed() const {
assert(!label_stack_.empty());
return label_stack_.back().used;
}
void CWriter::PopLabel() {
label_stack_.pop_back();
}
// static
constexpr char CWriter::MangleType(Type type) {
// clang-format off
switch (type) {
case Type::I32: return 'i';
case Type::I64: return 'j';
case Type::F32: return 'f';
case Type::F64: return 'd';
case Type::V128: return 'o';
case Type::FuncRef: return 'r';
case Type::ExternRef: return 'e';
default:
WABT_UNREACHABLE;
}
// clang-format on
}
// static
constexpr char CWriter::MangleField(ModuleFieldType type) {
assert(static_cast<std::underlying_type<ModuleFieldType>::type>(type) <
std::numeric_limits<char>::max());
return 'a' + static_cast<char>(type);
}
// remove risky characters for pasting into a C-style comment
static std::string SanitizeForComment(std::string_view str) {
std::string result;
for (const uint8_t ch : str) {
// escape control chars, DEL, >7-bit chars, trigraphs, and end of comment
if (ch < ' ' || ch > '~' || ch == '?' || ch == '/') {
result += "\\" + StringPrintf("%02X", ch);
} else {
result += ch;
}
}
return result;
}
// static
std::string CWriter::MangleMultivalueTypes(const TypeVector& types) {
assert(types.size() >= 2);
std::string result = "wasm_multi_";
for (auto type : types) {
result += MangleType(type);
}
return result;
}
// static
std::string CWriter::MangleTagTypes(const TypeVector& types) {
assert(types.size() >= 2);
std::string result = "wasm_tag_";
for (auto type : types) {
result += MangleType(type);
}
return result;
}
/* The C symbol for an export from this module. */
std::string CWriter::ExportName(std::string_view export_name) {
return kGlobalSymbolPrefix + module_prefix_ + '_' + MangleName(export_name);
}
/* The C symbol for an export from an arbitrary module. */
// static
std::string CWriter::ExportName(std::string_view module_name,
std::string_view export_name) {
return kGlobalSymbolPrefix + MangleModuleName(module_name) + '_' +
MangleName(export_name);
}
/* The type name of an instance of this module. */
std::string CWriter::ModuleInstanceTypeName() const {
return kGlobalSymbolPrefix + module_prefix_;
}
/* The type name of an instance of an arbitrary module. */
// static
std::string CWriter::ModuleInstanceTypeName(std::string_view module_name) {
return kGlobalSymbolPrefix + MangleModuleName(module_name);
}
/*
* Hardcoded "C"-locale versions of isalpha/isdigit/isalnum/isxdigit for use
* in CWriter::Mangle(). We don't use the standard isalpha/isdigit/isalnum
* because the caller might have changed the current locale.
*/
static bool internal_isalpha(uint8_t ch) {
return (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z');
}
static bool internal_isdigit(uint8_t ch) {
return (ch >= '0' && ch <= '9');
}
static bool internal_isalnum(uint8_t ch) {
return internal_isalpha(ch) || internal_isdigit(ch);
}
static bool internal_ishexdigit(uint8_t ch) {
return internal_isdigit(ch) || (ch >= 'A' && ch <= 'F'); // capitals only
}
// static
std::string CWriter::Mangle(std::string_view name, bool double_underscores) {
/*
* Name mangling transforms arbitrary Wasm names into "safe" C names
* in a deterministic way. To avoid collisions, distinct Wasm names must be
* transformed into distinct C names.
*
* The rules implemented here are:
* 1) any hex digit ('A' through 'F') that follows the sequence "0x"
* is escaped
* 2) any underscore at the beginning, at the end, or following another
* underscore, is escaped
* 3) if double_underscores is set, underscores are replaced with
* two underscores.
* 4) otherwise, any alphanumeric character is kept as-is,
* and any other character is escaped
*
* "Escaped" means the character is represented with the sequence "0xAB",
* where A B are hex digits ('0'-'9' or 'A'-'F') representing the character's
* numeric value.
*
* Module names are mangled with double_underscores=true to prevent
* collisions between, e.g., a module "alfa" with export
* "bravo_charlie" vs. a module "alfa_bravo" with export "charlie".
*/
enum State { Any, Zero, ZeroX, ZeroXHexDigit } state{Any};
bool last_was_underscore = false;
std::string result;
auto append_escaped = [&](const uint8_t ch) {
result += "0x" + StringPrintf("%02X", ch);
last_was_underscore = false;
state = Any;
};
auto append_verbatim = [&](const uint8_t ch) {
result += ch;
last_was_underscore = (ch == '_');
};
for (auto it = name.begin(); it != name.end(); ++it) {
const uint8_t ch = *it;
switch (state) {
case Any:
state = (ch == '0') ? Zero : Any;
break;
case Zero:
state = (ch == 'x') ? ZeroX : Any;
break;
case ZeroX:
state = internal_ishexdigit(ch) ? ZeroXHexDigit : Any;
break;
case ZeroXHexDigit:
WABT_UNREACHABLE;
break;
}
/* rule 1 */
if (state == ZeroXHexDigit) {
append_escaped(ch);
continue;
}
/* rule 2 */
if ((ch == '_') && ((it == name.begin()) || (std::next(it) == name.end()) ||
last_was_underscore)) {
append_escaped(ch);
continue;
}
/* rule 3 */
if (double_underscores && ch == '_') {
append_verbatim(ch);
append_verbatim(ch);
continue;
}
/* rule 4 */
if (internal_isalnum(ch) || (ch == '_')) {
append_verbatim(ch);
} else {
append_escaped(ch);
}
}
return result;
}
// static
std::string CWriter::MangleName(std::string_view name) {
return Mangle(name, false);
}
// static
std::string CWriter::MangleModuleName(std::string_view name) {
return Mangle(name, true);
}
/*
* Allocate a C symbol (must be unused) in the SymbolSet,
* and a mapping from the Wasm name (tagged with
* the index space of the name) to that C symbol.
*/
void CWriter::ClaimName(SymbolSet& set,
SymbolMap& map,
char type_suffix,
std::string_view wasm_name,
const std::string& c_name) {
const std::string type_tagged_wasm_name =
std::string(wasm_name) + type_suffix;
[[maybe_unused]] bool success;
success = set.insert(c_name).second;
assert(success);
success = map.emplace(type_tagged_wasm_name, c_name).second;
assert(success);
}
/*
* Make a proposed C symbol unique in a given symbol set by appending
* an integer to the symbol if necessary.
*/
std::string CWriter::FindUniqueName(SymbolSet& set,
std::string_view proposed_name) {
std::string unique{proposed_name};
if (set.find(unique) != set.end()) {
std::string base = unique + "_";
size_t count = 0;
do {
unique = base + std::to_string(count++);
} while (set.find(unique) != set.end());
}
return unique;
}
/*
* Find a unique C symbol in the symbol set and claim it (mapping the
* type-tagged Wasm name to it).
*/
std::string CWriter::ClaimUniqueName(SymbolSet& set,
SymbolMap& map,
char type_suffix,
std::string_view wasm_name,
const std::string& proposed_c_name) {
const std::string unique = FindUniqueName(set, proposed_c_name);
ClaimName(set, map, type_suffix, wasm_name, unique);
return unique;
}
std::string_view StripLeadingDollar(std::string_view name) {
assert(!name.empty());
assert(name.front() == '$');
name.remove_prefix(1);
return name;
}
void CWriter::DefineImportName(const Import* import,
std::string_view module,
std::string_view field_name) {
std::string name;
ModuleFieldType type{};
switch (import->kind()) {
case ExternalKind::Func:
type = ModuleFieldType::Func;
name = cast<FuncImport>(import)->func.name;
break;
case ExternalKind::Tag:
type = ModuleFieldType::Tag;
name = cast<TagImport>(import)->tag.name;
break;
case ExternalKind::Global:
type = ModuleFieldType::Global;
name = cast<GlobalImport>(import)->global.name;
break;
case ExternalKind::Memory:
type = ModuleFieldType::Memory;
name = cast<MemoryImport>(import)->memory.name;
break;
case ExternalKind::Table:
type = ModuleFieldType::Table;
name = cast<TableImport>(import)->table.name;
break;
}
import_syms_.insert(name);
import_module_sym_map_.emplace(name, import->module_name);
const std::string mangled = ExportName(module, field_name);
global_syms_.erase(mangled); // duplicate imports are allowed
ClaimName(global_syms_, global_sym_map_, MangleField(type), name, mangled);
}
/*
* Reserve a C symbol for the public name of a module's export. The
* format of these is "w2c_" + the module prefix + "_" + the mangled
* export name. Reserving the symbol prevents internal functions and
* other names from shadowing/overlapping the exports.
*/
void CWriter::ReserveExportName(std::string_view name) {
ClaimName(global_syms_, global_sym_map_, MangleField(ModuleFieldType::Export),
name, ExportName(name));
}
/*
* Names for functions, function types, tags, and segments are globally unique
* across modules (formatted the same as an export, as "w2c_" + module prefix +
* "_" + the name, made unique if necessary).
*/
std::string CWriter::DefineGlobalScopeName(ModuleFieldType type,
std::string_view name) {
return ClaimUniqueName(global_syms_, global_sym_map_, MangleField(type), name,
ExportName(StripLeadingDollar(name)));
}
std::string CWriter::GetGlobalName(ModuleFieldType type,
const std::string& name) const {
std::string mangled = name + MangleField(type);
assert(global_sym_map_.count(mangled) == 1);
return global_sym_map_.at(mangled);
}
/* Names for params, locals, and stack vars are formatted as "var_" + name. */
std::string CWriter::DefineLocalScopeName(std::string_view name,
bool is_label) {
return ClaimUniqueName(
local_syms_, local_sym_map_, is_label ? kLabelSuffix : kParamSuffix, name,
kLocalSymbolPrefix + MangleName(StripLeadingDollar(name)));
}
std::string CWriter::GetLocalName(const std::string& name,
bool is_label) const {
std::string mangled = name + (is_label ? kLabelSuffix : kParamSuffix);
assert(local_sym_map_.count(mangled) == 1);
return local_sym_map_.at(mangled);
}
std::string CWriter::DefineParamName(std::string_view name) {
return DefineLocalScopeName(name, false);
}
std::string CWriter::DefineLabelName(std::string_view name) {
return DefineLocalScopeName(name, true);
}
std::string CWriter::DefineStackVarName(Index index,
Type type,
std::string_view name) {
std::string unique =
FindUniqueName(local_syms_, kLocalSymbolPrefix + MangleName(name));
StackTypePair stp = {index, type};
[[maybe_unused]] bool success =
stack_var_sym_map_.emplace(stp, unique).second;
assert(success);
return unique;
}
/*
* Members of the module instance (globals, tables, and memories) are formatted
* as "w2c_" + the mangled name of the element (made unique if necessary).
*/
std::string CWriter::DefineInstanceMemberName(ModuleFieldType type,
std::string_view name) {
return ClaimUniqueName(
global_syms_, global_sym_map_, MangleField(type), name,
kGlobalSymbolPrefix + MangleName(StripLeadingDollar(name)));
}
/*
* The name of a module-instance member that points to the originating
* instance of an imported function is formatted as "w2c_" + originating
* module prefix + "_instance".
*/
std::string CWriter::DefineImportedModuleInstanceName(std::string_view name) {
return ClaimUniqueName(global_syms_, global_sym_map_,
MangleField(ModuleFieldType::Import), name,
ExportName(name, "instance"));
}
void CWriter::Indent(int size) {
indent_ += size;
}
void CWriter::Dedent(int size) {
indent_ -= size;
assert(indent_ >= 0);
}
void CWriter::WriteIndent() {
static char s_indent[] =
" "
" ";
static size_t s_indent_len = sizeof(s_indent) - 1;
size_t to_write = indent_;
while (to_write >= s_indent_len) {
stream_->WriteData(s_indent, s_indent_len);
to_write -= s_indent_len;
}
if (to_write > 0) {
stream_->WriteData(s_indent, to_write);
}
}
void CWriter::WriteData(const char* src, size_t size) {
if (should_write_indent_next_) {
WriteIndent();
should_write_indent_next_ = false;
}
if (size > 0 && src[0] != '\n') {
consecutive_newline_count_ = 0;
}
stream_->WriteData(src, size);
}
void WABT_PRINTF_FORMAT(2, 3) CWriter::Writef(const char* format, ...) {
WABT_SNPRINTF_ALLOCA(buffer, length, format);
WriteData(buffer, length);
}
void CWriter::Write(Newline) {
// Allow maximum one blank line between sections
if (consecutive_newline_count_ < 2) {
Write("\n");
consecutive_newline_count_++;
}
should_write_indent_next_ = true;
}
void CWriter::Write(OpenBrace) {
Write("{");
Indent();
Write(Newline());
}
void CWriter::Write(CloseBrace) {
Dedent();
Write("}");
}
void CWriter::Write(uint64_t val) {
Writef("%" PRIu64, val);
}
void CWriter::Write(std::string_view s) {
WriteData(s.data(), s.size());
}
void CWriter::Write(const ParamName& name) {
Write(GetLocalName(name.name, false));
}
void CWriter::Write(const LabelName& name) {
Write(GetLocalName(name.name, true));
}
void CWriter::Write(const GlobalName& name) {
Write(GetGlobalName(name.type, name.name));
}
void CWriter::Write(const ExternalPtr& name) {
bool is_import = import_syms_.count(name.name) != 0;
if (!is_import) {
Write("&");
}
Write(GlobalName(name));
}
void CWriter::Write(const ExternalInstancePtr& name) {
bool is_import = import_syms_.count(name.name) != 0;
if (!is_import) {
Write("&");
}
Write("instance->", GlobalName(name));
}
void CWriter::Write(const ExternalRef& name) {
bool is_import = import_syms_.count(name.name) != 0;
if (is_import) {
Write("(*", GlobalName(name), ")");
} else {
Write(GlobalName(name));
}
}
void CWriter::Write(const ExternalInstanceRef& name) {
bool is_import = import_syms_.count(name.name) != 0;
if (is_import) {
Write("(*instance->", GlobalName(name), ")");
} else {
Write("instance->", GlobalName(name));
}
}
void CWriter::Write(const GotoLabel& goto_label) {
const Label* label = FindLabel(goto_label.var);
if (label->HasValue()) {
size_t amount = label->sig.size();
assert(type_stack_.size() >= label->type_stack_size);
assert(type_stack_.size() >= amount);
assert(type_stack_.size() - amount >= label->type_stack_size);
Index offset = type_stack_.size() - label->type_stack_size - amount;
if (offset != 0) {
for (Index i = 0; i < amount; ++i) {
Write(StackVar(amount - i - 1 + offset, label->sig[i]), " = ",
StackVar(amount - i - 1), "; ");
}
}
}
assert(try_catch_stack_.size() >= label->try_catch_stack_size);
if (try_catch_stack_.size() != label->try_catch_stack_size) {
const std::string& name =
try_catch_stack_.at(label->try_catch_stack_size).name;
Write("wasm_rt_set_unwind_target(", name, "_outer_target);", Newline());
}
if (goto_label.var.is_name()) {
Write("goto ", LabelName(goto_label.var.name()), ";");
} else {
// We've generated names for all labels, so we should only be using an
// index when branching to the implicit function label, which can't be
// named.
Write("goto ", LabelName(kImplicitFuncLabel), ";");
}
}
void CWriter::Write(const LabelDecl& label) {
if (IsTopLabelUsed())
Write(label.name, ":;", Newline());
}
void CWriter::Write(const GlobalInstanceVar& var) {
assert(var.var.is_name());
Write(ExternalInstanceRef(ModuleFieldType::Global, var.var.name()));
}
void CWriter::Write(const StackVar& sv) {
Index index = type_stack_.size() - 1 - sv.index;
Type type = sv.type;
if (type == Type::Any) {
assert(index < type_stack_.size());
type = type_stack_[index];
}
StackTypePair stp = {index, type};
auto iter = stack_var_sym_map_.find(stp);
if (iter == stack_var_sym_map_.end()) {
std::string name = MangleType(type) + std::to_string(index);
Write(DefineStackVarName(index, type, name));
} else {
Write(iter->second);
}
}
// static
const char* CWriter::GetCTypeName(const Type& type) {
// clang-format off
switch (type) {
case Type::I32: return "u32";
case Type::I64: return "u64";
case Type::F32: return "f32";
case Type::F64: return "f64";
case Type::V128: return "v128";
case Type::FuncRef: return "wasm_rt_funcref_t";
case Type::ExternRef: return "wasm_rt_externref_t";
default:
WABT_UNREACHABLE;
}
// clang-format on
}
void CWriter::Write(Type type) {
Write(GetCTypeName(type));
}
void CWriter::Write(TypeEnum type) {
// clang-format off
switch (type.type) {
case Type::I32: Write("WASM_RT_I32"); break;
case Type::I64: Write("WASM_RT_I64"); break;
case Type::F32: Write("WASM_RT_F32"); break;
case Type::F64: Write("WASM_RT_F64"); break;
case Type::V128: Write("WASM_RT_V128"); break;
case Type::FuncRef: Write("WASM_RT_FUNCREF"); break;
case Type::ExternRef: Write("WASM_RT_EXTERNREF"); break;
default:
WABT_UNREACHABLE;
}
// clang-format on
}
void CWriter::Write(SignedType type) {
// clang-format off
switch (type.type) {
case Type::I32: Write("s32"); break;
case Type::I64: Write("s64"); break;
default:
WABT_UNREACHABLE;
}
// clang-format on
}
void CWriter::Write(const ResultType& rt) {
if (rt.types.empty()) {
Write("void");
} else if (rt.types.size() == 1) {
Write(rt.types[0]);
} else {
Write("struct ", MangleMultivalueTypes(rt.types));
}
}
void CWriter::Write(const Const& const_) {
switch (const_.type()) {
case Type::I32:
Writef("%uu", static_cast<int32_t>(const_.u32()));
break;
case Type::I64:
Writef("%" PRIu64 "ull", static_cast<int64_t>(const_.u64()));
break;
case Type::F32: {
uint32_t f32_bits = const_.f32_bits();
// TODO(binji): Share with similar float info in interp.cc and literal.cc
if ((f32_bits & 0x7f800000u) == 0x7f800000u) {
const char* sign = (f32_bits & 0x80000000) ? "-" : "";
uint32_t significand = f32_bits & 0x7fffffu;
if (significand == 0) {
// Infinity.
Writef("%sINFINITY", sign);
} else {
// Nan.
Writef("f32_reinterpret_i32(0x%08x) /* %snan:0x%06x */", f32_bits,
sign, significand);
}
} else if (f32_bits == 0x80000000) {
// Negative zero. Special-cased so it isn't written as -0 below.
Writef("-0.f");
} else {
Writef("%.9g", Bitcast<float>(f32_bits));
}
break;
}
case Type::F64: {
uint64_t f64_bits = const_.f64_bits();
// TODO(binji): Share with similar float info in interp.cc and literal.cc
if ((f64_bits & 0x7ff0000000000000ull) == 0x7ff0000000000000ull) {
const char* sign = (f64_bits & 0x8000000000000000ull) ? "-" : "";
uint64_t significand = f64_bits & 0xfffffffffffffull;
if (significand == 0) {
// Infinity.
Writef("%sINFINITY", sign);
} else {
// Nan.
Writef("f64_reinterpret_i64(0x%016" PRIx64 ") /* %snan:0x%013" PRIx64
" */",
f64_bits, sign, significand);
}
} else if (f64_bits == 0x8000000000000000ull) {
// Negative zero. Special-cased so it isn't written as -0 below.
Writef("-0.0");
} else {
Writef("%.17g", Bitcast<double>(f64_bits));
}
break;
}
case Type::V128: {
Writef("simde_wasm_i32x4_const(0x%08x, 0x%08x, 0x%08x, 0x%08x)",
const_.vec128().u32(0), const_.vec128().u32(1),
const_.vec128().u32(2), const_.vec128().u32(3));
break;
}
default:
WABT_UNREACHABLE;
}
}
void CWriter::WriteInitDecl() {
Write("void ", kAdminSymbolPrefix, module_prefix_, "_instantiate(",
ModuleInstanceTypeName(), "*");
for (const auto& import_module_name : import_module_set_) {
Write(", struct ", ModuleInstanceTypeName(import_module_name), "*");
}
Write(");", Newline());
}
void CWriter::WriteFreeDecl() {
Write("void ", kAdminSymbolPrefix, module_prefix_, "_free(",
ModuleInstanceTypeName(), "*);", Newline());
}
void CWriter::WriteGetFuncTypeDecl() {
Write("wasm_rt_func_type_t ", kAdminSymbolPrefix, module_prefix_,
"_get_func_type(uint32_t param_count, uint32_t result_count, ...);",
Newline());
}
void CWriter::WriteInitExpr(const ExprList& expr_list) {
if (expr_list.empty()) {
WABT_UNREACHABLE;
}
std::vector<std::string> mini_stack;
for (const auto& expr : expr_list) {
if (expr.type() == ExprType::Binary) {
// Extended const expressions include at least one binary op.
// This builds a C expression from the operands.
if (mini_stack.size() < 2) {
WABT_UNREACHABLE;
}
const auto binexpr = cast<BinaryExpr>(&expr);
char op;
switch (binexpr->opcode) {
case Opcode::I32Add:
case Opcode::I64Add:
case Opcode::F32Add:
case Opcode::F64Add:
op = '+';
break;
case Opcode::I32Sub:
case Opcode::I64Sub:
case Opcode::F32Sub:
case Opcode::F64Sub:
op = '-';
break;
case Opcode::I32Mul:
case Opcode::I64Mul:
case Opcode::F32Mul:
case Opcode::F64Mul:
op = '*';
break;
default:
WABT_UNREACHABLE;
}
std::string combination =
"((" + std::string(GetCTypeName(binexpr->opcode.GetParamType1())) +
")" + mini_stack.at(mini_stack.size() - 2) + ")" + op + "((" +
std::string(GetCTypeName(binexpr->opcode.GetParamType2())) + ")" +
mini_stack.at(mini_stack.size() - 1) + ")";
mini_stack.resize(mini_stack.size() - 2);
mini_stack.push_back(std::move(combination));
} else {
// Leaf node (nullary const expression)
Stream* existing_stream = stream_;
MemoryStream terminal_stream;
stream_ = &terminal_stream;
WriteInitExprTerminal(&expr);
const auto& buf = terminal_stream.output_buffer();
mini_stack.emplace_back(reinterpret_cast<const char*>(buf.data.data()),
buf.data.size());
stream_ = existing_stream;
}
}
if (mini_stack.size() != 1) {
WABT_UNREACHABLE;
}
Write(mini_stack.front());
}
void CWriter::WriteInitExprTerminal(const Expr* expr) {
switch (expr->type()) {
case ExprType::Const:
Write(cast<ConstExpr>(expr)->const_);
break;
case ExprType::GlobalGet:
Write(GlobalInstanceVar(cast<GlobalGetExpr>(expr)->var));
break;
case ExprType::RefFunc: {
const Func* func = module_->GetFunc(cast<RefFuncExpr>(expr)->var);
const FuncDeclaration& decl = func->decl;
assert(decl.has_func_type);
const FuncType* func_type = module_->GetFuncType(decl.type_var);
Write("(wasm_rt_funcref_t){", FuncTypeExpr(func_type), ", ",
"(wasm_rt_function_ptr_t)",
ExternalPtr(ModuleFieldType::Func, func->name), ", ");
bool is_import = import_module_sym_map_.count(func->name) != 0;
if (is_import) {
Write("instance->", GlobalName(ModuleFieldType::Import,
import_module_sym_map_[func->name]));
} else {
Write("instance");
}
Write("};", Newline());
} break;
case ExprType::RefNull:
Write(GetReferenceNullValue(cast<RefNullExpr>(expr)->type));
break;
default:
WABT_UNREACHABLE;
}
}
std::string CWriter::GenerateHeaderGuard() const {
std::string result;
for (char c : header_name_) {
if (isalnum(c) || c == '_') {
result += toupper(c);
} else {
result += '_';
}
}
result += "_GENERATED_";
return result;
}
void CWriter::WriteSourceTop() {
Write(s_source_includes);
Write(Newline(), "#include \"", header_name_, "\"", Newline());
Write(s_source_declarations, Newline());
if (module_->features_used.simd) {
if (!simd_used_in_header_) {
WriteV128Decl();
}
Write(s_simd_source_declarations);
}
}
void CWriter::WriteMultiCTop() {
if (c_streams_.size() > 1) {
assert(header_impl_name_.size() > 0);
Write("/* Automatically generated by wasm2c */", Newline());
Write("#include \"", header_impl_name_, "\"", Newline());
}
}
void CWriter::WriteMultiCTopEmpty() {
for (auto& stream : c_streams_) {
if (stream->offset() == 0) {
stream_ = stream;
Write("/* Empty wasm2c generated file */\n");
Write("typedef int dummy_def;");
}
}
}
void CWriter::WriteMultivalueTypes() {
for (TypeEntry* type : module_->types) {
FuncType* func_type = cast<FuncType>(type);
Index num_results = func_type->GetNumResults();
if (num_results <= 1) {
continue;
}
std::string name = MangleMultivalueTypes(func_type->sig.result_types);
// these ifndefs are actually to support importing multiple modules
// incidentally they also mean we don't have to bother with deduplication
Write("#ifndef ", name, Newline());
Write("#define ", name, " ", name, Newline());
Write("struct ", name, " ", OpenBrace());
for (Index i = 0; i < num_results; ++i) {
Type type = func_type->GetResultType(i);
Write(type);
Writef(" %c%d;", MangleType(type), i);
Write(Newline());
}
Write(CloseBrace(), ";", Newline(), "#endif /* ", name, " */", Newline());
}
}
void CWriter::WriteTagTypes() {
for (const Tag* tag : module_->tags) {
const FuncDeclaration& tag_type = tag->decl;
Index num_params = tag_type.GetNumParams();
if (num_params <= 1) {
continue;
}
const std::string name = MangleTagTypes(tag_type.sig.param_types);
// use same method as WriteMultivalueTypes
Write("#ifndef ", name, Newline());
Write("#define ", name, " ", name, Newline());
Write("struct ", name, " ", OpenBrace());
for (Index i = 0; i < num_params; ++i) {
Type type = tag_type.GetParamType(i);
Write(type);
Writef(" %c%d;", MangleType(type), i);
Write(Newline());
}
Write(CloseBrace(), ";", Newline(), "#endif /* ", name, " */", Newline());
}
}
void CWriter::WriteFuncTypeDecls() {
if (module_->types.empty()) {
return;
}
Write(Newline());
std::string serialized_type;
for (const TypeEntry* type : module_->types) {
const std::string name =
DefineGlobalScopeName(ModuleFieldType::Type, type->name);
if (c_streams_.size() > 1) {
Write("FUNC_TYPE_DECL_EXTERN_T(", name, ");", Newline());
}
}
}
void CWriter::WriteFuncTypes() {
if (module_->types.empty()) {
return;
}
Write(Newline());
std::unordered_map<std::string, std::string> type_hash;
std::string serialized_type;
for (const TypeEntry* type : module_->types) {
const std::string name = GetGlobalName(ModuleFieldType::Type, type->name);
SerializeFuncType(*cast<FuncType>(type), serialized_type);
auto prior_type = type_hash.find(serialized_type);
if (prior_type != type_hash.end()) {
/* duplicate function type */
unique_func_type_names_.push_back(prior_type->second);
} else {
unique_func_type_names_.push_back(name);
type_hash.emplace(serialized_type, name);
if (c_streams_.size() > 1) {
Write("FUNC_TYPE_EXTERN_T(");
} else {
Write("FUNC_TYPE_T(");
}
Write(name, ") = \"");
for (uint8_t x : serialized_type) {
Writef("\\x%02x", x);
}
Write("\";", Newline());
}
}
}
void CWriter::Write(const FuncTypeExpr& expr) {
Index func_type_index = module_->GetFuncTypeIndex(expr.func_type->sig);
Write(unique_func_type_names_.at(func_type_index));
}
// static
void CWriter::SerializeFuncType(const FuncType& func_type,
std::string& serialized_type) {
unsigned int len = func_type.GetNumParams() + func_type.GetNumResults() + 1;
char* const mangled_signature = static_cast<char*>(alloca(len));
char* next_byte = mangled_signature;
// step 1: serialize each param type
for (Index i = 0; i < func_type.GetNumParams(); ++i) {
*next_byte++ = MangleType(func_type.GetParamType(i));
}
// step 2: separate params and results with a space
*next_byte++ = ' ';
// step 3: serialize each result type
for (Index i = 0; i < func_type.GetNumResults(); ++i) {
*next_byte++ = MangleType(func_type.GetResultType(i));
}
assert(next_byte - mangled_signature == len);
// step 4: SHA-256 the whole string
sha256({mangled_signature, len}, serialized_type);
}
void CWriter::WriteTagDecls() {
Index tag_index = 0;
for (const Tag* tag : module_->tags) {
bool is_import = tag_index < module_->num_tag_imports;
if (!is_import) {
// Tags are identified and compared solely by their (unique) address.
// The data stored in this variable is never read.
if (tag_index == module_->num_tag_imports) {
Write(Newline());
Write("typedef char wasm_tag_placeholder_t;", Newline());
}
DefineGlobalScopeName(ModuleFieldType::Tag, tag->name);
if (c_streams_.size() > 1) {
Write("extern const wasm_tag_placeholder_t ",
GlobalName(ModuleFieldType::Tag, tag->name), ";", Newline());
}
}
tag_index++;
}
}
void CWriter::WriteTags() {
Write(Newline());
Index tag_index = 0;
for (const Tag* tag : module_->tags) {
bool is_import = tag_index < module_->num_tag_imports;
if (!is_import) {
Write(InternalSymbolScope(), "const wasm_tag_placeholder_t ",
GlobalName(ModuleFieldType::Tag, tag->name), ";", Newline());
}
tag_index++;
}
}
void CWriter::ComputeUniqueImports() {
using modname_name_pair = std::pair<std::string, std::string>;
std::map<modname_name_pair, const Import*> import_map;
for (const Import* import : module_->imports) {
// After emplacing, the returned bool says whether the insert happened;
// i.e., was there already an import with the same modname and name?
// If there was, make sure it was at least the same kind of import.
const auto iterator_and_insertion_bool = import_map.emplace(
modname_name_pair(import->module_name, import->field_name), import);
if (!iterator_and_insertion_bool.second) {
if (iterator_and_insertion_bool.first->second->kind() != import->kind()) {
UNIMPLEMENTED("contradictory import declaration");
} else {
fprintf(stderr, "warning: duplicate import declaration \"%s\" \"%s\"\n",
import->module_name.c_str(), import->field_name.c_str());
}
}
import_module_set_.insert(import->module_name);
if (import->kind() == ExternalKind::Func) {
import_func_module_set_.insert(import->module_name);
}
}
for (const auto& node : import_map) {
unique_imports_.push_back(node.second);
}
}
void CWriter::BeginInstance() {
if (module_->imports.empty()) {
Write("typedef struct ", ModuleInstanceTypeName(), " ", OpenBrace());
return;
}
ComputeUniqueImports();
// define names of per-instance imports
for (const Import* import : module_->imports) {
DefineImportName(import, import->module_name, import->field_name);
}
// Forward declaring module instance types
for (const auto& import_module : import_module_set_) {
DefineImportedModuleInstanceName(import_module);
Write("struct ", ModuleInstanceTypeName(import_module), ";", Newline());
}
// Forward declaring module imports
for (const Import* import : unique_imports_) {
if ((import->kind() == ExternalKind::Func) ||
(import->kind() == ExternalKind::Tag)) {
continue;
}
Write("extern ");
switch (import->kind()) {
case ExternalKind::Global: {
const Global& global = cast<GlobalImport>(import)->global;
Write(global.type);
break;
}
case ExternalKind::Memory: {
Write("wasm_rt_memory_t");
break;
}
case ExternalKind::Table:
WriteTableType(cast<TableImport>(import)->table.elem_type);
break;
default:
WABT_UNREACHABLE;
}
Write("* ", ExportName(import->module_name, import->field_name), "(struct ",
ModuleInstanceTypeName(import->module_name), "*);", Newline());
}
Write(Newline());
// Add pointers to module instances that any func is imported from,
// so that imported functions can be given their own module instances
// when invoked
Write("typedef struct ", ModuleInstanceTypeName(), " ", OpenBrace());
for (const auto& import_module : import_func_module_set_) {
Write("struct ", ModuleInstanceTypeName(import_module), "* ",
GlobalName(ModuleFieldType::Import, import_module), ";", Newline());
}
for (const Import* import : unique_imports_) {
if ((import->kind() == ExternalKind::Func) ||
(import->kind() == ExternalKind::Tag)) {
continue;
}
Write("/* import: '", SanitizeForComment(import->module_name), "' '",
SanitizeForComment(import->field_name), "' */", Newline());
switch (import->kind()) {
case ExternalKind::Global:
WriteGlobal(cast<GlobalImport>(import)->global,
std::string("*") +
ExportName(import->module_name, import->field_name));
break;
case ExternalKind::Memory:
WriteMemory(std::string("*") +
ExportName(import->module_name, import->field_name));
break;
case ExternalKind::Table: {
const Table& table = cast<TableImport>(import)->table;
WriteTable(std::string("*") +
ExportName(import->module_name, import->field_name),
table.elem_type);
} break;
default:
WABT_UNREACHABLE;
}
Write(Newline());
}
}
// Write module-wide imports (funcs & tags), which aren't tied to an instance.
void CWriter::WriteImports() {
if (unique_imports_.empty())
return;
Write(Newline());
for (const Import* import : unique_imports_) {
if (import->kind() == ExternalKind::Func) {
Write(Newline(), "/* import: '", SanitizeForComment(import->module_name),
"' '", SanitizeForComment(import->field_name), "' */", Newline());
const Func& func = cast<FuncImport>(import)->func;
WriteImportFuncDeclaration(
func.decl, import->module_name,
ExportName(import->module_name, import->field_name));
Write(";");
Write(Newline());
} else if (import->kind() == ExternalKind::Tag) {
Write(Newline(), "/* import: '", SanitizeForComment(import->module_name),
"' '", SanitizeForComment(import->field_name), "' */", Newline());
Write("extern const wasm_rt_tag_t ",
ExportName(import->module_name, import->field_name), ";",
Newline());
}
}
}
void CWriter::WriteFuncDeclarations() {
if (module_->funcs.size() == module_->num_func_imports)
return;
Write(Newline());
Index func_index = 0;
for (const Func* func : module_->funcs) {
bool is_import = func_index < module_->num_func_imports;
if (!is_import) {
Write(InternalSymbolScope());
WriteFuncDeclaration(
func->decl, DefineGlobalScopeName(ModuleFieldType::Func, func->name));
Write(";", Newline());
}
++func_index;
}
}
void CWriter::WriteFuncDeclaration(const FuncDeclaration& decl,
const std::string& name) {
Write(ResultType(decl.sig.result_types), " ", name, "(");
Write(ModuleInstanceTypeName(), "*");
WriteParamTypes(decl);
Write(")");
}
void CWriter::WriteImportFuncDeclaration(const FuncDeclaration& decl,
const std::string& module_name,
const std::string& name) {
Write(ResultType(decl.sig.result_types), " ", name, "(");
Write("struct ", ModuleInstanceTypeName(module_name), "*");
WriteParamTypes(decl);
Write(")");
}
void CWriter::WriteCallIndirectFuncDeclaration(const FuncDeclaration& decl,
const std::string& name) {
Write(ResultType(decl.sig.result_types), " ", name, "(void*");
WriteParamTypes(decl);
Write(")");
}
static bool func_uses_simd(const FuncSignature& sig) {
return std::any_of(sig.param_types.begin(), sig.param_types.end(),
[](auto x) { return x == Type::V128; }) ||
std::any_of(sig.result_types.begin(), sig.result_types.end(),
[](auto x) { return x == Type::V128; });
}
void CWriter::ComputeSimdScope() {
simd_used_in_header_ =
module_->features_used.simd &&
(std::any_of(module_->globals.begin(), module_->globals.end(),
[](const auto& x) { return x->type == Type::V128; }) ||
std::any_of(module_->imports.begin(), module_->imports.end(),
[](const auto& x) {
return x->kind() == ExternalKind::Func &&
func_uses_simd(cast<FuncImport>(x)->func.decl.sig);
}) ||
std::any_of(module_->exports.begin(), module_->exports.end(),
[&](const auto& x) {
return x->kind == ExternalKind::Func &&
func_uses_simd(module_->GetFunc(x->var)->decl.sig);
}));
}
void CWriter::WriteHeaderIncludes() {
Write("#include \"wasm-rt.h\"", Newline());
if (module_->features_used.exceptions) {
Write("#include \"wasm-rt-exceptions.h\"", Newline(), Newline());
}
if (simd_used_in_header_) {
WriteV128Decl();
}
Write(Newline());
}
void CWriter::WriteV128Decl() {
Write("#include <simde/wasm/simd128.h>", Newline(), Newline());
Write("#ifndef WASM_RT_SIMD_TYPE_DEFINED", Newline(),
"#define WASM_RT_SIMD_TYPE_DEFINED", Newline(),
"typedef simde_v128_t v128;", Newline(), "#endif", Newline(),
Newline());
}
void CWriter::WriteModuleInstance() {
BeginInstance();
WriteGlobals();
WriteMemories();
WriteTables();
WriteDataInstances();
WriteElemInstances();
// C forbids an empty struct
if (module_->globals.empty() && module_->memories.empty() &&
module_->tables.empty() && import_func_module_set_.empty()) {
Write("char dummy_member;", Newline());
}
Write(CloseBrace(), " ", ModuleInstanceTypeName(), ";", Newline());
Write(Newline());
}
void CWriter::WriteGlobals() {
Index global_index = 0;
if (module_->globals.size() != module_->num_global_imports) {
for (const Global* global : module_->globals) {
bool is_import = global_index < module_->num_global_imports;
if (!is_import) {
WriteGlobal(*global, DefineInstanceMemberName(ModuleFieldType::Global,
global->name));
Write(Newline());
}
++global_index;
}
}
}
void CWriter::WriteGlobal(const Global& global, const std::string& name) {
Write(global.type, " ", name, ";");
}
void CWriter::WriteGlobalPtr(const Global& global, const std::string& name) {
Write(global.type, "* ", name, "(", ModuleInstanceTypeName(), "* instance)");
}
void CWriter::WriteMemories() {
if (module_->memories.size() == module_->num_memory_imports)
return;
Index memory_index = 0;
for (const Memory* memory : module_->memories) {
bool is_import = memory_index < module_->num_memory_imports;
if (!is_import) {
WriteMemory(
DefineInstanceMemberName(ModuleFieldType::Memory, memory->name));
Write(Newline());
}
++memory_index;
}
}
void CWriter::WriteMemory(const std::string& name) {
Write("wasm_rt_memory_t ", name, ";");
}
void CWriter::WriteMemoryPtr(const std::string& name) {
Write("wasm_rt_memory_t* ", name, "(", ModuleInstanceTypeName(),
"* instance)");
}
void CWriter::WriteTables() {
if (module_->tables.size() == module_->num_table_imports) {
return;
}
Index table_index = 0;
for (const Table* table : module_->tables) {
bool is_import = table_index < module_->num_table_imports;
if (!is_import) {
WriteTable(DefineInstanceMemberName(ModuleFieldType::Table, table->name),
table->elem_type);
Write(Newline());
}
++table_index;
}
}
void CWriter::WriteTable(const std::string& name, const wabt::Type& type) {
WriteTableType(type);
Write(" ", name, ";");
}
void CWriter::WriteTablePtr(const std::string& name, const Table& table) {
WriteTableType(table.elem_type);
Write("* ", name, "(", ModuleInstanceTypeName(), "* instance)");
}
void CWriter::WriteTableType(const wabt::Type& type) {
Write("wasm_rt_", GetReferenceTypeName(type), "_table_t");
}
void CWriter::WriteGlobalInitializers() {
if (module_->globals.empty())
return;
Write(Newline(), "static void init_globals(", ModuleInstanceTypeName(),
"* instance) ", OpenBrace());
Index global_index = 0;
for (const Global* global : module_->globals) {
bool is_import = global_index < module_->num_global_imports;
if (!is_import) {
assert(!global->init_expr.empty());
Write(ExternalInstanceRef(ModuleFieldType::Global, global->name), " = ");
WriteInitExpr(global->init_expr);
Write(";", Newline());
}
++global_index;
}
Write(CloseBrace(), Newline());
}
static inline bool is_droppable(const DataSegment* data_segment) {
return (data_segment->kind == SegmentKind::Passive) &&
(!data_segment->data.empty());
}
static inline bool is_droppable(const ElemSegment* elem_segment) {
return (elem_segment->kind == SegmentKind::Passive) &&
(!elem_segment->elem_exprs.empty());
}
void CWriter::WriteDataInstances() {
for (const DataSegment* data_segment : module_->data_segments) {
std::string name =
DefineGlobalScopeName(ModuleFieldType::DataSegment, data_segment->name);
if (is_droppable(data_segment)) {
Write("bool ", "data_segment_dropped_", name, " : 1;", Newline());
}
}
}
void CWriter::WriteDataInitializerDecls() {
if (module_->memories.empty()) {
return;
}
for (const DataSegment* data_segment : module_->data_segments) {
if (data_segment->data.empty()) {
continue;
}
if (c_streams_.size() > 1) {
Write(Newline(), "extern const u8 data_segment_data_",
GlobalName(ModuleFieldType::DataSegment, data_segment->name), "[];",
Newline());
}
}
}
void CWriter::WriteDataInitializers() {
if (module_->memories.empty()) {
return;
}
for (const DataSegment* data_segment : module_->data_segments) {
if (data_segment->data.empty()) {
continue;
}
Write(Newline(), InternalSymbolScope(), "const u8 data_segment_data_",
GlobalName(ModuleFieldType::DataSegment, data_segment->name),
"[] = ", OpenBrace());
size_t i = 0;
for (uint8_t x : data_segment->data) {
Writef("0x%02x, ", x);
if ((++i % 12) == 0)
Write(Newline());
}
if (i > 0)
Write(Newline());
Write(CloseBrace(), ";", Newline());
}
Write(Newline(), "static void init_memories(", ModuleInstanceTypeName(),
"* instance) ", OpenBrace());
if (module_->memories.size() > module_->num_memory_imports) {
Index memory_idx = module_->num_memory_imports;
for (Index i = memory_idx; i < module_->memories.size(); i++) {
const Memory* memory = module_->memories[i];
uint64_t max;
if (memory->page_limits.has_max) {
max = memory->page_limits.max;
} else {
max = memory->page_limits.is_64 ? (static_cast<uint64_t>(1) << 48)
: 65536;
}
Write("wasm_rt_allocate_memory(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", ",
memory->page_limits.initial, ", ", max, ", ",
memory->page_limits.is_64, ");", Newline());
}
}
for (const DataSegment* data_segment : module_->data_segments) {
if (data_segment->kind != SegmentKind::Active) {
continue;
}
const Memory* memory =
module_->memories[module_->GetMemoryIndex(data_segment->memory_var)];
Write("LOAD_DATA(",
ExternalInstanceRef(ModuleFieldType::Memory, memory->name), ", ");
WriteInitExpr(data_segment->offset);
if (data_segment->data.empty()) {
Write(", NULL, 0");
} else {
Write(", data_segment_data_",
GlobalName(ModuleFieldType::DataSegment, data_segment->name), ", ",
data_segment->data.size());
}
Write(");", Newline());
}
Write(CloseBrace(), Newline());
if (!module_->data_segments.empty()) {
Write(Newline(), "static void init_data_instances(",
ModuleInstanceTypeName(), " *instance) ", OpenBrace());
for (const DataSegment* data_segment : module_->data_segments) {
if (is_droppable(data_segment)) {
Write("instance->data_segment_dropped_",
GlobalName(ModuleFieldType::DataSegment, data_segment->name),
" = false;", Newline());
}
}
Write(CloseBrace(), Newline());
}
}
void CWriter::WriteElemInstances() {
for (const ElemSegment* elem_segment : module_->elem_segments) {
std::string name =
DefineGlobalScopeName(ModuleFieldType::ElemSegment, elem_segment->name);
if (is_droppable(elem_segment)) {
Write("bool ", "elem_segment_dropped_", name, " : 1;", Newline());
}
}
}
void CWriter::WriteElemInitializerDecls() {
if (module_->tables.empty()) {
return;
}
for (const ElemSegment* elem_segment : module_->elem_segments) {
if (elem_segment->elem_exprs.empty()) {
continue;
}
if (elem_segment->elem_type == Type::ExternRef) {
// no need to store externref elem initializers because only
// ref.null is possible
continue;
}
if (c_streams_.size() > 1) {
Write(Newline(),
"extern const wasm_elem_segment_expr_t elem_segment_exprs_",
GlobalName(ModuleFieldType::ElemSegment, elem_segment->name), "[];",
Newline());
}
}
}
void CWriter::WriteElemInitializers() {
if (module_->tables.empty()) {
return;
}
for (const ElemSegment* elem_segment : module_->elem_segments) {
if (elem_segment->elem_exprs.empty()) {
continue;
}
if (elem_segment->elem_type == Type::ExternRef) {
// no need to store externref elem initializers because only
// ref.null is possible
continue;
}
Write(Newline(), InternalSymbolScope(),
"const wasm_elem_segment_expr_t elem_segment_exprs_",
GlobalName(ModuleFieldType::ElemSegment, elem_segment->name),
"[] = ", OpenBrace());
for (const ExprList& elem_expr : elem_segment->elem_exprs) {
assert(elem_expr.size() == 1);
const Expr& expr = elem_expr.front();
switch (expr.type()) {
case ExprType::RefFunc: {
const Func* func = module_->GetFunc(cast<RefFuncExpr>(&expr)->var);
const FuncType* func_type = module_->GetFuncType(func->decl.type_var);
Write("{", FuncTypeExpr(func_type), ", (wasm_rt_function_ptr_t)",
ExternalPtr(ModuleFieldType::Func, func->name), ", ");
const bool is_import = import_module_sym_map_.count(func->name) != 0;
if (is_import) {
Write("offsetof(", ModuleInstanceTypeName(), ", ",
GlobalName(ModuleFieldType::Import,
import_module_sym_map_[func->name]),
")");
} else {
Write("0");
}
Write("},", Newline());
} break;
case ExprType::RefNull:
Write("{NULL, NULL, 0},", Newline());
break;
default:
WABT_UNREACHABLE;
}
}
Write(CloseBrace(), ";", Newline());
}
Write(Newline(), "static void init_tables(", ModuleInstanceTypeName(),
"* instance) ", OpenBrace());
if (module_->tables.size() > module_->num_table_imports) {
Index table_idx = module_->num_table_imports;
for (Index i = table_idx; i < module_->tables.size(); i++) {
const Table* table = module_->tables[i];
uint32_t max =
table->elem_limits.has_max ? table->elem_limits.max : UINT32_MAX;
Write("wasm_rt_allocate_", GetReferenceTypeName(table->elem_type),
"_table(", ExternalInstancePtr(ModuleFieldType::Table, table->name),
", ", table->elem_limits.initial, ", ", max, ");", Newline());
}
}
for (const ElemSegment* elem_segment : module_->elem_segments) {
if (elem_segment->kind != SegmentKind::Active) {
continue;
}
const Table* table = module_->GetTable(elem_segment->table_var);
WriteElemTableInit(true, elem_segment, table);
}
Write(CloseBrace(), Newline());
if (!module_->elem_segments.empty()) {
Write(Newline(), "static void init_elem_instances(",
ModuleInstanceTypeName(), " *instance) ", OpenBrace());
for (const ElemSegment* elem_segment : module_->elem_segments) {
if (is_droppable(elem_segment)) {
Write("instance->elem_segment_dropped_",
GlobalName(ModuleFieldType::ElemSegment, elem_segment->name),
" = false;", Newline());
}
}
Write(CloseBrace(), Newline());
}
}
void CWriter::WriteElemTableInit(bool active_initialization,
const ElemSegment* src_segment,
const Table* dst_table) {
assert(dst_table->elem_type == Type::FuncRef ||
dst_table->elem_type == Type::ExternRef);
assert(dst_table->elem_type == src_segment->elem_type);
Write(GetReferenceTypeName(dst_table->elem_type), "_table_init(",
ExternalInstancePtr(ModuleFieldType::Table, dst_table->name), ", ");
// elem segment exprs needed only for funcref tables
// because externref tables can only be initialized with ref.null
if (dst_table->elem_type == Type::FuncRef) {
if (src_segment->elem_exprs.empty()) {
Write("NULL, ");
} else {
Write("elem_segment_exprs_",
GlobalName(ModuleFieldType::ElemSegment, src_segment->name), ", ");
}
}
// src_size, dest_addr, src_addr, N
if (active_initialization) {
Write(src_segment->elem_exprs.size(), ", ");
WriteInitExpr(src_segment->offset);
Write(", 0, ", src_segment->elem_exprs.size());
} else {
if (is_droppable(src_segment)) {
Write("(instance->elem_segment_dropped_",
GlobalName(ModuleFieldType::ElemSegment, src_segment->name),
" ? 0 : ", src_segment->elem_exprs.size(), "), ");
} else {
Write("0, ");
}
Write(StackVar(2), ", ", StackVar(1), ", ", StackVar(0));
}
if (dst_table->elem_type == Type::FuncRef) {
Write(", instance");
}
Write(");", Newline());
}
void CWriter::WriteExports(CWriterPhase kind) {
if (module_->exports.empty())
return;
for (const Export* export_ : module_->exports) {
Write(Newline(), "/* export: '", SanitizeForComment(export_->name), "' */",
Newline());
const std::string mangled_name = ExportName(export_->name);
std::string internal_name;
std::vector<std::string> index_to_name;
switch (export_->kind) {
case ExternalKind::Func: {
const Func* func = module_->GetFunc(export_->var);
internal_name = func->name;
if (kind == CWriterPhase::Declarations) {
WriteFuncDeclaration(func->decl, mangled_name);
} else {
func_ = func;
local_syms_ = global_syms_;
local_sym_map_.clear();
stack_var_sym_map_.clear();
Write(ResultType(func_->decl.sig.result_types), " ", mangled_name,
"(");
MakeTypeBindingReverseMapping(func_->GetNumParamsAndLocals(),
func_->bindings, &index_to_name);
WriteParams(index_to_name);
}
break;
}
case ExternalKind::Global: {
const Global* global = module_->GetGlobal(export_->var);
internal_name = global->name;
WriteGlobalPtr(*global, mangled_name);
break;
}
case ExternalKind::Memory: {
const Memory* memory = module_->GetMemory(export_->var);
internal_name = memory->name;
WriteMemoryPtr(mangled_name);
break;
}
case ExternalKind::Table: {
const Table* table = module_->GetTable(export_->var);
internal_name = table->name;
WriteTablePtr(mangled_name, *table);
break;
}
case ExternalKind::Tag: {
const Tag* tag = module_->GetTag(export_->var);
internal_name = tag->name;
if (kind == CWriterPhase::Declarations) {
Write("extern ");
}
Write("const wasm_rt_tag_t ", mangled_name);
break;
}
default:
WABT_UNREACHABLE;
}
if (kind == CWriterPhase::Declarations) {
Write(";", Newline());
continue;
}
Write(" ");
switch (export_->kind) {
case ExternalKind::Func: {
Write(OpenBrace());
Write("return ", ExternalRef(ModuleFieldType::Func, internal_name),
"(");
bool is_import = import_module_sym_map_.count(internal_name) != 0;
if (is_import) {
Write("instance->",
GlobalName(ModuleFieldType::Import,
import_module_sym_map_[internal_name]));
} else {
Write("instance");
}
WriteParamSymbols(index_to_name);
Write(CloseBrace(), Newline());
local_sym_map_.clear();
stack_var_sym_map_.clear();
func_ = nullptr;
break;
}
case ExternalKind::Global:
Write(OpenBrace());
Write("return ",
ExternalInstancePtr(ModuleFieldType::Global, internal_name), ";",
Newline());
Write(CloseBrace(), Newline());
break;
case ExternalKind::Memory:
Write(OpenBrace());
Write("return ",
ExternalInstancePtr(ModuleFieldType::Memory, internal_name), ";",
Newline());
Write(CloseBrace(), Newline());
break;
case ExternalKind::Table:
Write(OpenBrace());
Write("return ",
ExternalInstancePtr(ModuleFieldType::Table, internal_name), ";",
Newline());
Write(CloseBrace(), Newline());
break;
case ExternalKind::Tag:
Write("= ", ExternalPtr(ModuleFieldType::Tag, internal_name), ";",
Newline());
break;
default:
WABT_UNREACHABLE;
}
}
}
void CWriter::WriteInit() {
Write(Newline(), "void ", kAdminSymbolPrefix, module_prefix_, "_instantiate(",
ModuleInstanceTypeName(), "* instance");
for (const auto& import_module_name : import_module_set_) {
Write(", struct ", ModuleInstanceTypeName(import_module_name), "* ",
GlobalName(ModuleFieldType::Import, import_module_name));
}
Write(") ", OpenBrace());
Write("assert(wasm_rt_is_initialized());", Newline());
if (!import_module_set_.empty()) {
Write("init_instance_import(instance");
for (const auto& import_module_name : import_module_set_) {
Write(", ", GlobalName(ModuleFieldType::Import, import_module_name));
}
Write(");", Newline());
}
if (!module_->globals.empty()) {
Write("init_globals(instance);", Newline());
}
if (!module_->tables.empty()) {
Write("init_tables(instance);", Newline());
}
if (!module_->memories.empty()) {
Write("init_memories(instance);", Newline());
}
if (!module_->tables.empty() && !module_->elem_segments.empty()) {
Write("init_elem_instances(instance);", Newline());
}
if (!module_->memories.empty() && !module_->data_segments.empty()) {
Write("init_data_instances(instance);", Newline());
}
for (Var* var : module_->starts) {
Write(ExternalRef(ModuleFieldType::Func, module_->GetFunc(*var)->name));
bool is_import =
import_module_sym_map_.count(module_->GetFunc(*var)->name) != 0;
if (is_import) {
Write("(instance->",
GlobalName(ModuleFieldType::Import,
import_module_sym_map_[module_->GetFunc(*var)->name]),
");");
} else {
Write("(instance);");
}
Write(Newline());
}
Write(CloseBrace(), Newline());
}
void CWriter::WriteGetFuncType() {
Write(Newline(), "wasm_rt_func_type_t ", kAdminSymbolPrefix, module_prefix_,
"_get_func_type(uint32_t param_count, uint32_t result_count, "
"...) ",
OpenBrace());
Write("va_list args;", Newline());
for (const TypeEntry* type : module_->types) {
const FuncType* func_type = cast<FuncType>(type);
const FuncSignature& signature = func_type->sig;
Write(Newline(), "if (param_count == ", signature.GetNumParams(),
" && result_count == ", signature.GetNumResults(), ") ", OpenBrace());
Write("va_start(args, result_count);", Newline());
Write("if (true");
for (const auto& t : signature.param_types) {
Write(" && va_arg(args, wasm_rt_type_t) == ", TypeEnum(t));
}
for (const auto& t : signature.result_types) {
Write(" && va_arg(args, wasm_rt_type_t) == ", TypeEnum(t));
}
Write(") ", OpenBrace());
Write("va_end(args);", Newline());
Write("return ", FuncTypeExpr(func_type), ";", Newline());
Write(CloseBrace(), Newline());
Write("va_end(args);", Newline());
Write(CloseBrace(), Newline());
}
Write(Newline(), "return NULL;", Newline());
Write(CloseBrace(), Newline());
}
void CWriter::WriteInitInstanceImport() {
if (import_module_set_.empty())
return;
Write(Newline(), "static void init_instance_import(",
ModuleInstanceTypeName(), "* instance");
for (const auto& import_module_name : import_module_set_) {
Write(", struct ", ModuleInstanceTypeName(import_module_name), "* ",
GlobalName(ModuleFieldType::Import, import_module_name));
}
Write(")", OpenBrace());
for (const auto& import_module : import_func_module_set_) {
Write("instance->", GlobalName(ModuleFieldType::Import, import_module),
" = ", GlobalName(ModuleFieldType::Import, import_module), ";",
Newline());
}
for (const Import* import : unique_imports_) {
switch (import->kind()) {
case ExternalKind::Func:
case ExternalKind::Tag:
break;
case ExternalKind::Global:
case ExternalKind::Memory:
case ExternalKind::Table: {
Write("instance->", ExportName(import->module_name, import->field_name),
" = ", ExportName(import->module_name, import->field_name), "(",
GlobalName(ModuleFieldType::Import, import->module_name), ");",
Newline());
break;
}
default:
WABT_UNREACHABLE;
}
}
Write(CloseBrace(), Newline());
}
void CWriter::WriteImportProperties(CWriterPhase kind) {
if (import_module_set_.empty())
return;
Write(Newline());
auto write_import_prop = [&](const Import* import, std::string prop,
std::string type, uint64_t value) {
if (kind == CWriterPhase::Declarations) {
Write("extern ");
}
Write("const ", type, " ", kAdminSymbolPrefix, module_prefix_, "_", prop,
"_", MangleModuleName(import->module_name), "_",
MangleName(import->field_name));
if (kind == CWriterPhase::Definitions) {
Write(" = ", value);
}
Write(";", Newline());
};
for (const Import* import : unique_imports_) {
if (import->kind() == ExternalKind::Memory) {
const Limits* limits = &(cast<MemoryImport>(import)->memory.page_limits);
// We use u64 so we can handle both 32-bit and 64-bit memories
const uint64_t default_max = limits->is_64
? (static_cast<uint64_t>(1) << 48)
: (static_cast<uint64_t>(1) << 16);
write_import_prop(import, "min", "u64", limits->initial);
write_import_prop(import, "max", "u64",
limits->has_max ? limits->max : default_max);
write_import_prop(import, "is64", "u8", limits->is_64);
} else if (import->kind() == ExternalKind::Table) {
const Limits* limits = &(cast<TableImport>(import)->table.elem_limits);
const uint64_t default_max = std::numeric_limits<uint32_t>::max();
write_import_prop(import, "min", "u32", limits->initial);
write_import_prop(import, "max", "u32",
limits->has_max ? limits->max : default_max);
} else {
continue;
}
}
}
void CWriter::WriteFree() {
Write(Newline(), "void ", kAdminSymbolPrefix, module_prefix_, "_free(",
ModuleInstanceTypeName(), "* instance) ", OpenBrace());
{
Index table_index = 0;
for (const Table* table : module_->tables) {
bool is_import = table_index < module_->num_table_imports;
if (!is_import) {
Write("wasm_rt_free_", GetReferenceTypeName(table->elem_type),
"_table(",
ExternalInstancePtr(ModuleFieldType::Table, table->name), ");",
Newline());
}
++table_index;
}
}
{
Index memory_index = 0;
for (const Memory* memory : module_->memories) {
bool is_import = memory_index < module_->num_memory_imports;
if (!is_import) {
Write("wasm_rt_free_memory(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ");",
Newline());
}
++memory_index;
}
}
Write(CloseBrace(), Newline());
}
void CWriter::WriteFuncs() {
std::vector<size_t> c_stream_assignment =
name_to_output_file_index_(module_->funcs.begin(), module_->funcs.end(),
module_->num_func_imports, c_streams_.size());
Index func_index = 0;
for (const Func* func : module_->funcs) {
bool is_import = func_index < module_->num_func_imports;
if (!is_import) {
stream_ = c_streams_.at(c_stream_assignment.at(func_index));
Write(*func);
}
++func_index;
}
}
void CWriter::PushFuncSection(std::string_view include_condition) {
func_sections_.emplace_back(include_condition, MemoryStream{});
stream_ = &func_sections_.back().second;
}
void CWriter::Write(const Func& func) {
func_ = &func;
local_syms_.clear();
local_sym_map_.clear();
stack_var_sym_map_.clear();
func_sections_.clear();
func_includes_.clear();
Stream* prev_stream = stream_;
/*
* If offset of stream_ is 0, this is the first time some function is written
* to this stream, then write multi c top.
*/
if (stream_->offset() == 0) {
WriteMultiCTop();
}
Write(Newline());
PushFuncSection();
Write(ResultType(func.decl.sig.result_types), " ",
GlobalName(ModuleFieldType::Func, func.name), "(");
WriteParamsAndLocals();
Write("FUNC_PROLOGUE;", Newline());
PushFuncSection();
std::string label = DefineLabelName(kImplicitFuncLabel);
ResetTypeStack(0);
std::string empty; // Must not be temporary, since address is taken by Label.
PushLabel(LabelType::Func, empty, func.decl.sig);
Write(func.exprs, LabelDecl(label));
PopLabel();
ResetTypeStack(0);
PushTypes(func.decl.sig.result_types);
Write("FUNC_EPILOGUE;", Newline());
// Return the top of the stack implicitly.
Index num_results = func.GetNumResults();
if (num_results == 1) {
Write("return ", StackVar(0), ";", Newline());
} else if (num_results >= 2) {
Write(OpenBrace());
Write(ResultType(func.decl.sig.result_types), " tmp;", Newline());
for (Index i = 0; i < num_results; ++i) {
Type type = func.GetResultType(i);
Writef("tmp.%c%d = ", MangleType(type), i);
Write(StackVar(num_results - i - 1), ";", Newline());
}
Write("return tmp;", Newline());
Write(CloseBrace(), Newline());
}
stream_ = prev_stream;
for (size_t i = 0; i < func_sections_.size(); ++i) {
auto& [condition, stream] = func_sections_.at(i);
std::unique_ptr<OutputBuffer> buf = stream.ReleaseOutputBuffer();
if (condition.empty() || func_includes_.count(condition)) {
stream_->WriteData(buf->data.data(), buf->data.size());
}
if (i == 0) {
WriteStackVarDeclarations(); // these come immediately after section #0
// (return type/name/params/locals)
}
}
Write(CloseBrace(), Newline());
func_ = nullptr;
}
void CWriter::WriteParamsAndLocals() {
std::vector<std::string> index_to_name;
MakeTypeBindingReverseMapping(func_->GetNumParamsAndLocals(), func_->bindings,
&index_to_name);
WriteParams(index_to_name);
Write(" ", OpenBrace());
WriteLocals(index_to_name);
}
void CWriter::WriteParams(const std::vector<std::string>& index_to_name) {
Write(ModuleInstanceTypeName(), "* instance");
if (func_->GetNumParams() != 0) {
Indent(4);
for (Index i = 0; i < func_->GetNumParams(); ++i) {
Write(", ");
if (i != 0 && (i % 8) == 0) {
Write(Newline());
}
Write(func_->GetParamType(i), " ", DefineParamName(index_to_name[i]));
}
Dedent(4);
}
Write(")");
}
void CWriter::WriteParamSymbols(const std::vector<std::string>& index_to_name) {
if (func_->GetNumParams() != 0) {
Indent(4);
for (Index i = 0; i < func_->GetNumParams(); ++i) {
Write(", ");
if (i != 0 && (i % 8) == 0) {
Write(Newline());
}
Write(ParamName(index_to_name[i]));
}
Dedent(4);
}
Write(");", Newline());
}
void CWriter::WriteParamTypes(const FuncDeclaration& decl) {
if (decl.GetNumParams() != 0) {
for (Index i = 0; i < decl.GetNumParams(); ++i) {
Write(", ");
Write(decl.GetParamType(i));
}
}
}
void CWriter::WriteLocals(const std::vector<std::string>& index_to_name) {
Index num_params = func_->GetNumParams();
for (Type type : {Type::I32, Type::I64, Type::F32, Type::F64, Type::V128,
Type::FuncRef, Type::ExternRef}) {
Index local_index = 0;
size_t count = 0;
for (Type local_type : func_->local_types) {
if (local_type == type) {
if (count == 0) {
Write(type, " ");
Indent(4);
} else {
Write(", ");
if ((count % 8) == 0)
Write(Newline());
}
Write(DefineParamName(index_to_name[num_params + local_index]), " = ");
if (local_type == Type::FuncRef || local_type == Type::ExternRef) {
Write(GetReferenceNullValue(local_type));
} else if (local_type == Type::V128) {
Write("simde_wasm_i64x2_make(0, 0)");
} else {
Write("0");
}
++count;
}
++local_index;
}
if (count != 0) {
Dedent(4);
Write(";", Newline());
}
}
}
void CWriter::WriteStackVarDeclarations() {
for (Type type : {Type::I32, Type::I64, Type::F32, Type::F64, Type::V128,
Type::FuncRef, Type::ExternRef}) {
size_t count = 0;
for (const auto& [pair, name] : stack_var_sym_map_) {
Type stp_type = pair.second;
if (stp_type == type) {
if (count == 0) {
Write(type, " ");
Indent(4);
} else {
Write(", ");
if ((count % 8) == 0)
Write(Newline());
}
Write(name);
++count;
}
}
if (count != 0) {
Dedent(4);
Write(";", Newline());
}
}
}
void CWriter::Write(const Block& block) {
std::string label = DefineLabelName(block.label);
DropTypes(block.decl.GetNumParams());
size_t mark = MarkTypeStack();
PushLabel(LabelType::Block, block.label, block.decl.sig);
PushTypes(block.decl.sig.param_types);
Write(block.exprs, LabelDecl(label));
ResetTypeStack(mark);
PopLabel();
PushTypes(block.decl.sig.result_types);
}
size_t CWriter::BeginTry(const TryExpr& tryexpr) {
Write(OpenBrace()); /* beginning of try-catch */
const std::string tlabel = DefineLabelName(tryexpr.block.label);
Write("WASM_RT_UNWIND_TARGET *", tlabel,
"_outer_target = wasm_rt_get_unwind_target();", Newline());
Write("WASM_RT_UNWIND_TARGET ", tlabel, "_unwind_target;", Newline());
Write("if (!wasm_rt_try(", tlabel, "_unwind_target)) ");
Write(OpenBrace()); /* beginning of try block */
DropTypes(tryexpr.block.decl.GetNumParams());
const size_t mark = MarkTypeStack();
PushLabel(LabelType::Try, tryexpr.block.label, tryexpr.block.decl.sig);
PushTypes(tryexpr.block.decl.sig.param_types);
Write("wasm_rt_set_unwind_target(&", tlabel, "_unwind_target);", Newline());
PushTryCatch(tlabel);
Write(tryexpr.block.exprs);
ResetTypeStack(mark);
Write("wasm_rt_set_unwind_target(", tlabel, "_outer_target);", Newline());
Write(CloseBrace()); /* end of try block */
Write(" else ", OpenBrace()); /* beginning of catch blocks or delegate */
assert(label_stack_.back().name == tryexpr.block.label);
assert(label_stack_.back().label_type == LabelType::Try);
label_stack_.back().label_type = LabelType::Catch;
if (try_catch_stack_.back().used) {
Write(tlabel, "_catch:;", Newline());
}
return mark;
}
void CWriter::WriteTryCatch(const TryExpr& tryexpr) {
const size_t mark = BeginTry(tryexpr);
/* exception has been thrown -- do we catch it? */
const LabelName tlabel = LabelName(tryexpr.block.label);
Write("wasm_rt_set_unwind_target(", tlabel, "_outer_target);", Newline());
PopTryCatch();
/* save the thrown exception to the stack if it might be rethrown later */
PushFuncSection(tryexpr.block.label);
Write("/* save exception ", tlabel, " for rethrow */", Newline());
Write("const wasm_rt_tag_t ", tlabel, "_tag = wasm_rt_exception_tag();",
Newline());
Write("uint32_t ", tlabel, "_size = wasm_rt_exception_size();", Newline());
Write("void *", tlabel, " = alloca(", tlabel, "_size);", Newline());
Write("wasm_rt_memcpy(", tlabel, ", wasm_rt_exception(), ", tlabel, "_size);",
Newline());
PushFuncSection();
assert(!tryexpr.catches.empty());
bool has_catch_all{};
for (auto it = tryexpr.catches.cbegin(); it != tryexpr.catches.cend(); ++it) {
if (it == tryexpr.catches.cbegin()) {
Write(Newline());
} else {
Write(" else ");
}
ResetTypeStack(mark);
Write(*it);
if (it->IsCatchAll()) {
has_catch_all = true;
break;
}
}
if (!has_catch_all) {
/* if not caught, rethrow */
Write(" else ", OpenBrace());
WriteThrow();
Write(CloseBrace(), Newline());
}
Write(CloseBrace(), Newline()); /* end of catch blocks */
Write(CloseBrace(), Newline()); /* end of try-catch */
ResetTypeStack(mark);
assert(!label_stack_.empty());
assert(label_stack_.back().name == tryexpr.block.label);
Write(LabelDecl(GetLocalName(tryexpr.block.label, true)));
PopLabel();
PushTypes(tryexpr.block.decl.sig.result_types);
}
void CWriter::Write(const Catch& c) {
if (c.IsCatchAll()) {
Write(c.exprs);
return;
}
Write("if (wasm_rt_exception_tag() == ",
ExternalPtr(ModuleFieldType::Tag, module_->GetTag(c.var)->name), ") ",
OpenBrace());
const Tag* tag = module_->GetTag(c.var);
const FuncDeclaration& tag_type = tag->decl;
const Index num_params = tag_type.GetNumParams();
if (num_params == 1) {
PushType(tag_type.GetParamType(0));
Write("wasm_rt_memcpy(&", StackVar(0), ", wasm_rt_exception(), sizeof(",
tag_type.GetParamType(0), "));", Newline());
} else if (num_params > 1) {
for (const auto& type : tag_type.sig.param_types) {
PushType(type);
}
Write(OpenBrace());
Write("struct ", MangleTagTypes(tag_type.sig.param_types), " tmp;",
Newline());
Write("wasm_rt_memcpy(&tmp, wasm_rt_exception(), sizeof(tmp));", Newline());
for (unsigned int i = 0; i < tag_type.sig.param_types.size(); ++i) {
Write(StackVar(i));
Writef(" = tmp.%c%d;", MangleType(tag_type.sig.param_types.at(i)), i);
Write(Newline());
}
Write(CloseBrace(), Newline());
}
Write(c.exprs);
Write(CloseBrace());
}
void CWriter::WriteThrow() {
if (try_catch_stack_.empty()) {
Write("wasm_rt_throw();", Newline());
} else {
Write("goto ", try_catch_stack_.back().name, "_catch;", Newline());
try_catch_stack_.back().used = true;
}
}
void CWriter::PushTryCatch(const std::string& name) {
try_catch_stack_.emplace_back(name, try_catch_stack_.size());
}
void CWriter::PopTryCatch() {
assert(!try_catch_stack_.empty());
try_catch_stack_.pop_back();
}
void CWriter::WriteTryDelegate(const TryExpr& tryexpr) {
const size_t mark = BeginTry(tryexpr);
/* exception has been thrown -- where do we delegate it? */
if (tryexpr.delegate_target.is_index()) {
/* must be the implicit function label */
assert(!try_catch_stack_.empty());
const std::string& unwind_name = try_catch_stack_.at(0).name;
Write("wasm_rt_set_unwind_target(", unwind_name, "_outer_target);",
Newline());
Write("wasm_rt_throw();", Newline());
} else {
const Label* label = FindLabel(tryexpr.delegate_target, false);
assert(try_catch_stack_.size() >= label->try_catch_stack_size);
if (label->label_type == LabelType::Try) {
Write("goto ", LabelName(label->name), "_catch;", Newline());
try_catch_stack_.at(label->try_catch_stack_size).used = true;
} else if (label->try_catch_stack_size == 0) {
assert(!try_catch_stack_.empty());
const std::string& unwind_name = try_catch_stack_.at(0).name;
Write("wasm_rt_set_unwind_target(", unwind_name, "_outer_target);",
Newline());
Write("wasm_rt_throw();", Newline());
} else {
const std::string label_target =
try_catch_stack_.at(label->try_catch_stack_size - 1).name + "_catch";
Write("goto ", label_target, ";", Newline());
try_catch_stack_.at(label->try_catch_stack_size - 1).used = true;
}
}
Write(CloseBrace(), Newline());
Write(CloseBrace(), Newline());
PopTryCatch();
ResetTypeStack(mark);
assert(!label_stack_.empty());
assert(label_stack_.back().name == tryexpr.block.label);
Write(LabelDecl(GetLocalName(tryexpr.block.label, true)));
PopLabel();
PushTypes(tryexpr.block.decl.sig.result_types);
}
void CWriter::Write(const ExprList& exprs) {
for (const Expr& expr : exprs) {
switch (expr.type()) {
case ExprType::Binary:
Write(*cast<BinaryExpr>(&expr));
break;
case ExprType::Block:
Write(cast<BlockExpr>(&expr)->block);
break;
case ExprType::Br:
Write(GotoLabel(cast<BrExpr>(&expr)->var), Newline());
// Stop processing this ExprList, since the following are unreachable.
return;
case ExprType::BrIf:
Write("if (", StackVar(0), ") {");
DropTypes(1);
Write(GotoLabel(cast<BrIfExpr>(&expr)->var), "}", Newline());
break;
case ExprType::BrTable: {
const auto* bt_expr = cast<BrTableExpr>(&expr);
Write("switch (", StackVar(0), ") ", OpenBrace());
DropTypes(1);
Index i = 0;
for (const Var& var : bt_expr->targets) {
Write("case ", i++, ": ", GotoLabel(var), Newline());
}
Write("default: ");
Write(GotoLabel(bt_expr->default_target), Newline(), CloseBrace(),
Newline());
// Stop processing this ExprList, since the following are unreachable.
return;
}
case ExprType::Call: {
const Var& var = cast<CallExpr>(&expr)->var;
const Func& func = *module_->GetFunc(var);
Index num_params = func.GetNumParams();
Index num_results = func.GetNumResults();
assert(type_stack_.size() >= num_params);
if (num_results > 1) {
Write(OpenBrace());
Write("struct ", MangleMultivalueTypes(func.decl.sig.result_types));
Write(" tmp = ");
} else if (num_results == 1) {
Write(StackVar(num_params - 1, func.GetResultType(0)), " = ");
}
assert(var.is_name());
Write(ExternalRef(ModuleFieldType::Func, var.name()), "(");
bool is_import = import_module_sym_map_.count(func.name) != 0;
if (is_import) {
Write("instance->", GlobalName(ModuleFieldType::Import,
import_module_sym_map_[func.name]));
} else {
Write("instance");
}
for (Index i = 0; i < num_params; ++i) {
Write(", ");
Write(StackVar(num_params - i - 1));
}
Write(");", Newline());
DropTypes(num_params);
if (num_results > 1) {
for (Index i = 0; i < num_results; ++i) {
Type type = func.GetResultType(i);
PushType(type);
Write(StackVar(0));
Writef(" = tmp.%c%d;", MangleType(type), i);
Write(Newline());
}
Write(CloseBrace(), Newline());
} else {
PushTypes(func.decl.sig.result_types);
}
break;
}
case ExprType::CallIndirect: {
const FuncDeclaration& decl = cast<CallIndirectExpr>(&expr)->decl;
Index num_params = decl.GetNumParams();
Index num_results = decl.GetNumResults();
assert(type_stack_.size() > num_params);
if (num_results > 1) {
Write(OpenBrace());
Write("struct ", MangleMultivalueTypes(decl.sig.result_types));
Write(" tmp = ");
} else if (num_results == 1) {
Write(StackVar(num_params, decl.GetResultType(0)), " = ");
}
const Table* table =
module_->GetTable(cast<CallIndirectExpr>(&expr)->table);
assert(decl.has_func_type);
const FuncType* func_type = module_->GetFuncType(decl.type_var);
Write("CALL_INDIRECT(",
ExternalInstanceRef(ModuleFieldType::Table, table->name), ", ");
WriteCallIndirectFuncDeclaration(decl, "(*)");
Write(", ", FuncTypeExpr(func_type), ", ", StackVar(0));
Write(", ", ExternalInstanceRef(ModuleFieldType::Table, table->name),
".data[", StackVar(0), "].module_instance");
for (Index i = 0; i < num_params; ++i) {
Write(", ", StackVar(num_params - i));
}
Write(");", Newline());
DropTypes(num_params + 1);
if (num_results > 1) {
for (Index i = 0; i < num_results; ++i) {
Type type = decl.GetResultType(i);
PushType(type);
Write(StackVar(0));
Writef(" = tmp.%c%d;", MangleType(type), i);
Write(Newline());
}
Write(CloseBrace(), Newline());
} else {
PushTypes(decl.sig.result_types);
}
break;
}
case ExprType::CodeMetadata:
break;
case ExprType::Compare:
Write(*cast<CompareExpr>(&expr));
break;
case ExprType::Const: {
const Const& const_ = cast<ConstExpr>(&expr)->const_;
PushType(const_.type());
Write(StackVar(0), " = ", const_, ";", Newline());
break;
}
case ExprType::Convert:
Write(*cast<ConvertExpr>(&expr));
break;
case ExprType::Drop:
DropTypes(1);
break;
case ExprType::GlobalGet: {
const Var& var = cast<GlobalGetExpr>(&expr)->var;
PushType(module_->GetGlobal(var)->type);
Write(StackVar(0), " = ", GlobalInstanceVar(var), ";", Newline());
break;
}
case ExprType::GlobalSet: {
const Var& var = cast<GlobalSetExpr>(&expr)->var;
Write(GlobalInstanceVar(var), " = ", StackVar(0), ";", Newline());
DropTypes(1);
break;
}
case ExprType::If: {
const IfExpr& if_ = *cast<IfExpr>(&expr);
Write("if (", StackVar(0), ") ", OpenBrace());
DropTypes(1);
std::string label = DefineLabelName(if_.true_.label);
DropTypes(if_.true_.decl.GetNumParams());
size_t mark = MarkTypeStack();
PushLabel(LabelType::If, if_.true_.label, if_.true_.decl.sig);
PushTypes(if_.true_.decl.sig.param_types);
Write(if_.true_.exprs, CloseBrace());
if (!if_.false_.empty()) {
ResetTypeStack(mark);
PushTypes(if_.true_.decl.sig.param_types);
Write(" else ", OpenBrace(), if_.false_, CloseBrace());
}
ResetTypeStack(mark);
Write(Newline(), LabelDecl(label));
PopLabel();
PushTypes(if_.true_.decl.sig.result_types);
break;
}
case ExprType::Load:
Write(*cast<LoadExpr>(&expr));
break;
case ExprType::LocalGet: {
const Var& var = cast<LocalGetExpr>(&expr)->var;
PushType(func_->GetLocalType(var));
Write(StackVar(0), " = ", var, ";", Newline());
break;
}
case ExprType::LocalSet: {
const Var& var = cast<LocalSetExpr>(&expr)->var;
Write(var, " = ", StackVar(0), ";", Newline());
DropTypes(1);
break;
}
case ExprType::LocalTee: {
const Var& var = cast<LocalTeeExpr>(&expr)->var;
Write(var, " = ", StackVar(0), ";", Newline());
break;
}
case ExprType::Loop: {
const Block& block = cast<LoopExpr>(&expr)->block;
if (!block.exprs.empty()) {
Write(DefineLabelName(block.label), ": ");
Indent();
DropTypes(block.decl.GetNumParams());
size_t mark = MarkTypeStack();
PushLabel(LabelType::Loop, block.label, block.decl.sig);
PushTypes(block.decl.sig.param_types);
Write(Newline(), block.exprs);
ResetTypeStack(mark);
PopLabel();
PushTypes(block.decl.sig.result_types);
Dedent();
}
break;
}
case ExprType::MemoryFill: {
const auto inst = cast<MemoryFillExpr>(&expr);
Memory* memory =
module_->memories[module_->GetMemoryIndex(inst->memidx)];
Write("memory_fill(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", ",
StackVar(2), ", ", StackVar(1), ", ", StackVar(0), ");",
Newline());
DropTypes(3);
} break;
case ExprType::MemoryCopy: {
const auto inst = cast<MemoryCopyExpr>(&expr);
Memory* dest_memory =
module_->memories[module_->GetMemoryIndex(inst->destmemidx)];
const Memory* src_memory = module_->GetMemory(inst->srcmemidx);
Write("memory_copy(",
ExternalInstancePtr(ModuleFieldType::Memory, dest_memory->name),
", ",
ExternalInstancePtr(ModuleFieldType::Memory, src_memory->name),
", ", StackVar(2), ", ", StackVar(1), ", ", StackVar(0), ");",
Newline());
DropTypes(3);
} break;
case ExprType::MemoryInit: {
const auto inst = cast<MemoryInitExpr>(&expr);
Memory* dest_memory =
module_->memories[module_->GetMemoryIndex(inst->memidx)];
const DataSegment* src_data = module_->GetDataSegment(inst->var);
Write("memory_init(",
ExternalInstancePtr(ModuleFieldType::Memory, dest_memory->name),
", ");
if (src_data->data.empty()) {
Write("NULL, 0");
} else {
Write("data_segment_data_",
GlobalName(ModuleFieldType::DataSegment, src_data->name), ", ");
if (is_droppable(src_data)) {
Write("(", "instance->data_segment_dropped_",
GlobalName(ModuleFieldType::DataSegment, src_data->name),
" ? 0 : ", src_data->data.size(), ")");
} else {
Write("0");
}
}
Write(", ", StackVar(2), ", ", StackVar(1), ", ", StackVar(0), ");",
Newline());
DropTypes(3);
} break;
case ExprType::TableInit: {
const auto inst = cast<TableInitExpr>(&expr);
Table* dest_table =
module_->tables[module_->GetTableIndex(inst->table_index)];
const ElemSegment* src_segment =
module_->GetElemSegment(inst->segment_index);
WriteElemTableInit(false, src_segment, dest_table);
DropTypes(3);
} break;
case ExprType::DataDrop: {
const auto inst = cast<DataDropExpr>(&expr);
const DataSegment* data = module_->GetDataSegment(inst->var);
if (is_droppable(data)) {
Write("instance->data_segment_dropped_",
GlobalName(ModuleFieldType::DataSegment, data->name),
" = true;", Newline());
}
} break;
case ExprType::ElemDrop: {
const auto inst = cast<ElemDropExpr>(&expr);
const ElemSegment* seg = module_->GetElemSegment(inst->var);
if (is_droppable(seg)) {
Write("instance->elem_segment_dropped_",
GlobalName(ModuleFieldType::ElemSegment, seg->name), " = true;",
Newline());
}
} break;
case ExprType::TableCopy: {
const auto inst = cast<TableCopyExpr>(&expr);
Table* dest_table =
module_->tables[module_->GetTableIndex(inst->dst_table)];
const Table* src_table = module_->GetTable(inst->src_table);
if (dest_table->elem_type != src_table->elem_type) {
WABT_UNREACHABLE;
}
Write(
GetReferenceTypeName(dest_table->elem_type), "_table_copy(",
ExternalInstancePtr(ModuleFieldType::Table, dest_table->name), ", ",
ExternalInstancePtr(ModuleFieldType::Table, src_table->name), ", ",
StackVar(2), ", ", StackVar(1), ", ", StackVar(0), ");", Newline());
DropTypes(3);
} break;
case ExprType::TableGet: {
const Table* table = module_->GetTable(cast<TableGetExpr>(&expr)->var);
Write(StackVar(0, table->elem_type), " = ",
GetReferenceTypeName(table->elem_type), "_table_get(",
ExternalInstancePtr(ModuleFieldType::Table, table->name), ", ",
StackVar(0), ");", Newline());
DropTypes(1);
PushType(table->elem_type);
} break;
case ExprType::TableSet: {
const Table* table = module_->GetTable(cast<TableSetExpr>(&expr)->var);
Write(GetReferenceTypeName(table->elem_type), "_table_set(",
ExternalInstancePtr(ModuleFieldType::Table, table->name), ", ",
StackVar(1), ", ", StackVar(0), ");", Newline());
DropTypes(2);
} break;
case ExprType::TableGrow: {
const Table* table = module_->GetTable(cast<TableGrowExpr>(&expr)->var);
Write(StackVar(1, Type::I32), " = wasm_rt_grow_",
GetReferenceTypeName(table->elem_type), "_table(",
ExternalInstancePtr(ModuleFieldType::Table, table->name), ", ",
StackVar(0), ", ", StackVar(1), ");", Newline());
DropTypes(2);
PushType(Type::I32);
} break;
case ExprType::TableSize: {
const Table* table = module_->GetTable(cast<TableSizeExpr>(&expr)->var);
PushType(Type::I32);
Write(StackVar(0), " = ",
ExternalInstanceRef(ModuleFieldType::Table, table->name),
".size;", Newline());
} break;
case ExprType::TableFill: {
const Table* table = module_->GetTable(cast<TableFillExpr>(&expr)->var);
Write(GetReferenceTypeName(table->elem_type), "_table_fill(",
ExternalInstancePtr(ModuleFieldType::Table, table->name), ", ",
StackVar(2), ", ", StackVar(1), ", ", StackVar(0), ");",
Newline());
DropTypes(3);
} break;
case ExprType::RefFunc: {
const Func* func = module_->GetFunc(cast<RefFuncExpr>(&expr)->var);
PushType(Type::FuncRef);
const FuncDeclaration& decl = func->decl;
assert(decl.has_func_type);
const FuncType* func_type = module_->GetFuncType(decl.type_var);
Write(StackVar(0), " = (wasm_rt_funcref_t){", FuncTypeExpr(func_type),
", (wasm_rt_function_ptr_t)",
ExternalPtr(ModuleFieldType::Func, func->name), ", ");
bool is_import = import_module_sym_map_.count(func->name) != 0;
if (is_import) {
Write("instance->", GlobalName(ModuleFieldType::Import,
import_module_sym_map_[func->name]));
} else {
Write("instance");
}
Write("};", Newline());
} break;
case ExprType::RefNull:
PushType(cast<RefNullExpr>(&expr)->type);
Write(StackVar(0), " = ",
GetReferenceNullValue(cast<RefNullExpr>(&expr)->type), ";",
Newline());
break;
case ExprType::RefIsNull:
switch (StackType(0)) {
case Type::FuncRef:
Write(StackVar(0, Type::I32), " = (", StackVar(0), ".func == NULL",
");", Newline());
break;
case Type::ExternRef:
Write(StackVar(0, Type::I32), " = (", StackVar(0),
" == ", GetReferenceNullValue(Type::ExternRef), ");",
Newline());
break;
default:
WABT_UNREACHABLE;
}
DropTypes(1);
PushType(Type::I32);
break;
case ExprType::MemoryGrow: {
Memory* memory = module_->memories[module_->GetMemoryIndex(
cast<MemoryGrowExpr>(&expr)->memidx)];
Write(StackVar(0), " = wasm_rt_grow_memory(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", ",
StackVar(0), ");", Newline());
break;
}
case ExprType::MemorySize: {
Memory* memory = module_->memories[module_->GetMemoryIndex(
cast<MemorySizeExpr>(&expr)->memidx)];
PushType(memory->page_limits.IndexType());
Write(StackVar(0), " = ",
ExternalInstanceRef(ModuleFieldType::Memory, memory->name),
".pages;", Newline());
break;
}
case ExprType::Nop:
break;
case ExprType::Return:
// Goto the function label instead; this way we can do shared function
// cleanup code in one place.
Write(GotoLabel(Var(label_stack_.size() - 1, {})), Newline());
// Stop processing this ExprList, since the following are unreachable.
return;
case ExprType::Select: {
Type type = StackType(1);
Write(StackVar(2), " = ", StackVar(0), " ? ", StackVar(2), " : ",
StackVar(1), ";", Newline());
DropTypes(3);
PushType(type);
break;
}
case ExprType::Store:
Write(*cast<StoreExpr>(&expr));
break;
case ExprType::Unary:
Write(*cast<UnaryExpr>(&expr));
break;
case ExprType::Ternary:
Write(*cast<TernaryExpr>(&expr));
break;
case ExprType::SimdLaneOp: {
Write(*cast<SimdLaneOpExpr>(&expr));
break;
}
case ExprType::SimdLoadLane: {
Write(*cast<SimdLoadLaneExpr>(&expr));
break;
}
case ExprType::SimdStoreLane: {
Write(*cast<SimdStoreLaneExpr>(&expr));
break;
}
case ExprType::SimdShuffleOp: {
Write(*cast<SimdShuffleOpExpr>(&expr));
break;
}
case ExprType::LoadSplat:
Write(*cast<LoadSplatExpr>(&expr));
break;
case ExprType::LoadZero:
Write(*cast<LoadZeroExpr>(&expr));
break;
case ExprType::Unreachable:
Write("UNREACHABLE;", Newline());
return;
case ExprType::Throw: {
const Var& var = cast<ThrowExpr>(&expr)->var;
const Tag* tag = module_->GetTag(var);
Index num_params = tag->decl.GetNumParams();
if (num_params == 0) {
Write("wasm_rt_load_exception(",
ExternalPtr(ModuleFieldType::Tag, tag->name), ", 0, NULL);",
Newline());
} else if (num_params == 1) {
Write("wasm_rt_load_exception(",
ExternalPtr(ModuleFieldType::Tag, tag->name), ", sizeof(",
tag->decl.GetParamType(0), "), &", StackVar(0), ");",
Newline());
} else {
Write(OpenBrace());
Write("struct ", MangleTagTypes(tag->decl.sig.param_types));
Write(" tmp = {");
for (Index i = 0; i < num_params; ++i) {
Write(StackVar(i), ", ");
}
Write("};", Newline());
Write("wasm_rt_load_exception(",
ExternalPtr(ModuleFieldType::Tag, tag->name),
", sizeof(tmp), &tmp);", Newline());
Write(CloseBrace(), Newline());
}
WriteThrow();
} break;
case ExprType::Rethrow: {
const RethrowExpr* rethrow = cast<RethrowExpr>(&expr);
assert(rethrow->var.is_name());
const LabelName ex{rethrow->var.name()};
func_includes_.insert(rethrow->var.name());
Write("wasm_rt_load_exception(", ex, "_tag, ", ex, "_size, ", ex, ");",
Newline());
WriteThrow();
} break;
case ExprType::Try: {
const TryExpr& tryexpr = *cast<TryExpr>(&expr);
switch (tryexpr.kind) {
case TryKind::Plain:
Write(tryexpr.block);
break;
case TryKind::Catch:
WriteTryCatch(tryexpr);
break;
case TryKind::Delegate:
WriteTryDelegate(tryexpr);
break;
}
} break;
case ExprType::AtomicLoad:
case ExprType::AtomicRmw:
case ExprType::AtomicRmwCmpxchg:
case ExprType::AtomicStore:
case ExprType::AtomicWait:
case ExprType::AtomicFence:
case ExprType::AtomicNotify:
case ExprType::ReturnCall:
case ExprType::ReturnCallIndirect:
case ExprType::CallRef:
UNIMPLEMENTED("...");
break;
}
}
}
void CWriter::WriteSimpleUnaryExpr(Opcode opcode, const char* op) {
Type result_type = opcode.GetResultType();
Write(StackVar(0, result_type), " = ", op, "(", StackVar(0), ");", Newline());
DropTypes(1);
PushType(opcode.GetResultType());
}
void CWriter::WriteInfixBinaryExpr(Opcode opcode,
const char* op,
AssignOp assign_op) {
Type result_type = opcode.GetResultType();
Write(StackVar(1, result_type));
if (assign_op == AssignOp::Allowed) {
Write(" ", op, "= ", StackVar(0));
} else {
Write(" = ", StackVar(1), " ", op, " ", StackVar(0));
}
Write(";", Newline());
DropTypes(2);
PushType(result_type);
}
void CWriter::WritePrefixBinaryExpr(Opcode opcode, const char* op) {
Type result_type = opcode.GetResultType();
Write(StackVar(1, result_type), " = ", op, "(", StackVar(1), ", ",
StackVar(0), ");", Newline());
DropTypes(2);
PushType(result_type);
}
void CWriter::WriteSignedBinaryExpr(Opcode opcode, const char* op) {
Type result_type = opcode.GetResultType();
Type type = opcode.GetParamType1();
assert(opcode.GetParamType2() == type);
Write(StackVar(1, result_type), " = (", type, ")((", SignedType(type), ")",
StackVar(1), " ", op, " (", SignedType(type), ")", StackVar(0), ");",
Newline());
DropTypes(2);
PushType(result_type);
}
void CWriter::Write(const BinaryExpr& expr) {
switch (expr.opcode) {
case Opcode::I32Add:
case Opcode::I64Add:
case Opcode::F32Add:
case Opcode::F64Add:
WriteInfixBinaryExpr(expr.opcode, "+");
break;
case Opcode::I32Sub:
case Opcode::I64Sub:
case Opcode::F32Sub:
case Opcode::F64Sub:
WriteInfixBinaryExpr(expr.opcode, "-");
break;
case Opcode::I32Mul:
case Opcode::I64Mul:
case Opcode::F32Mul:
case Opcode::F64Mul:
WriteInfixBinaryExpr(expr.opcode, "*");
break;
case Opcode::I32DivS:
WritePrefixBinaryExpr(expr.opcode, "I32_DIV_S");
break;
case Opcode::I64DivS:
WritePrefixBinaryExpr(expr.opcode, "I64_DIV_S");
break;
case Opcode::I32DivU:
case Opcode::I64DivU:
WritePrefixBinaryExpr(expr.opcode, "DIV_U");
break;
case Opcode::F32Div:
case Opcode::F64Div:
WriteInfixBinaryExpr(expr.opcode, "/");
break;
case Opcode::I32RemS:
WritePrefixBinaryExpr(expr.opcode, "I32_REM_S");
break;
case Opcode::I64RemS:
WritePrefixBinaryExpr(expr.opcode, "I64_REM_S");
break;
case Opcode::I32RemU:
case Opcode::I64RemU:
WritePrefixBinaryExpr(expr.opcode, "REM_U");
break;
case Opcode::I32And:
case Opcode::I64And:
WriteInfixBinaryExpr(expr.opcode, "&");
break;
case Opcode::I32Or:
case Opcode::I64Or:
WriteInfixBinaryExpr(expr.opcode, "|");
break;
case Opcode::I32Xor:
case Opcode::I64Xor:
WriteInfixBinaryExpr(expr.opcode, "^");
break;
case Opcode::I32Shl:
case Opcode::I64Shl:
Write(StackVar(1), " <<= (", StackVar(0), " & ",
GetShiftMask(expr.opcode.GetResultType()), ");", Newline());
DropTypes(1);
break;
case Opcode::I32ShrS:
case Opcode::I64ShrS: {
Type type = expr.opcode.GetResultType();
Write(StackVar(1), " = (", type, ")((", SignedType(type), ")",
StackVar(1), " >> (", StackVar(0), " & ", GetShiftMask(type), "));",
Newline());
DropTypes(1);
break;
}
case Opcode::I32ShrU:
case Opcode::I64ShrU:
Write(StackVar(1), " >>= (", StackVar(0), " & ",
GetShiftMask(expr.opcode.GetResultType()), ");", Newline());
DropTypes(1);
break;
case Opcode::I32Rotl:
WritePrefixBinaryExpr(expr.opcode, "I32_ROTL");
break;
case Opcode::I64Rotl:
WritePrefixBinaryExpr(expr.opcode, "I64_ROTL");
break;
case Opcode::I32Rotr:
WritePrefixBinaryExpr(expr.opcode, "I32_ROTR");
break;
case Opcode::I64Rotr:
WritePrefixBinaryExpr(expr.opcode, "I64_ROTR");
break;
case Opcode::F32Min:
case Opcode::F64Min:
WritePrefixBinaryExpr(expr.opcode, "FMIN");
break;
case Opcode::F32Max:
case Opcode::F64Max:
WritePrefixBinaryExpr(expr.opcode, "FMAX");
break;
case Opcode::F32Copysign:
WritePrefixBinaryExpr(expr.opcode, "copysignf");
break;
case Opcode::F64Copysign:
WritePrefixBinaryExpr(expr.opcode, "copysign");
break;
case Opcode::I8X16Add:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_add");
break;
case Opcode::I8X16AddSatS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_add_sat");
break;
case Opcode::I8X16AddSatU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_add_sat");
break;
case Opcode::I8X16AvgrU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_avgr");
break;
case Opcode::I8X16MaxS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_max");
break;
case Opcode::I8X16MaxU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_max");
break;
case Opcode::I8X16MinS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_min");
break;
case Opcode::I8X16MinU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_min");
break;
case Opcode::I8X16NarrowI16X8S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_narrow_i16x8");
break;
case Opcode::I8X16NarrowI16X8U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_narrow_i16x8");
break;
case Opcode::I8X16Shl:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_shl");
break;
case Opcode::I8X16ShrS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_shr");
break;
case Opcode::I8X16ShrU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_shr");
break;
case Opcode::I8X16Sub:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_sub");
break;
case Opcode::I8X16SubSatS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_sub_sat");
break;
case Opcode::I8X16SubSatU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_sub_sat");
break;
case Opcode::I8X16Swizzle:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_swizzle");
break;
case Opcode::I16X8Add:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_add");
break;
case Opcode::I16X8AvgrU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_avgr");
break;
case Opcode::I16X8AddSatS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_add_sat");
break;
case Opcode::I16X8AddSatU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_add_sat");
break;
case Opcode::I16X8ExtmulHighI8X16S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_extmul_high_i8x16");
break;
case Opcode::I16X8ExtmulHighI8X16U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_extmul_high_u8x16");
break;
case Opcode::I16X8ExtmulLowI8X16S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_extmul_low_i8x16");
break;
case Opcode::I16X8ExtmulLowI8X16U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_extmul_low_u8x16");
break;
case Opcode::I16X8MaxS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_max");
break;
case Opcode::I16X8MaxU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_max");
break;
case Opcode::I16X8MinS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_min");
break;
case Opcode::I16X8MinU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_min");
break;
case Opcode::I16X8Mul:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_mul");
break;
case Opcode::I16X8NarrowI32X4S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_narrow_i32x4");
break;
case Opcode::I16X8NarrowI32X4U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_narrow_i32x4");
break;
case Opcode::I16X8Q15mulrSatS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_q15mulr_sat");
break;
case Opcode::I16X8Shl:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_shl");
break;
case Opcode::I16X8ShrS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_shr");
break;
case Opcode::I16X8ShrU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_shr");
break;
case Opcode::I16X8Sub:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_sub");
break;
case Opcode::I16X8SubSatS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_sub_sat");
break;
case Opcode::I16X8SubSatU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_sub_sat");
break;
case Opcode::I32X4Add:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_add");
break;
case Opcode::I32X4DotI16X8S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_dot_i16x8");
break;
case Opcode::I32X4ExtmulHighI16X8S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_extmul_high_i16x8");
break;
case Opcode::I32X4ExtmulHighI16X8U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_extmul_high_u16x8");
break;
case Opcode::I32X4ExtmulLowI16X8S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_extmul_low_i16x8");
break;
case Opcode::I32X4ExtmulLowI16X8U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_extmul_low_u16x8");
break;
case Opcode::I32X4MaxS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_max");
break;
case Opcode::I32X4MaxU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_max");
break;
case Opcode::I32X4MinS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_min");
break;
case Opcode::I32X4MinU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_min");
break;
case Opcode::I32X4Mul:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_mul");
break;
case Opcode::I32X4Shl:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_shl");
break;
case Opcode::I32X4ShrS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_shr");
break;
case Opcode::I32X4ShrU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_shr");
break;
case Opcode::I32X4Sub:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_sub");
break;
case Opcode::I64X2Add:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_add");
break;
case Opcode::I64X2ExtmulHighI32X4S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_extmul_high_i32x4");
break;
case Opcode::I64X2ExtmulHighI32X4U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u64x2_extmul_high_u32x4");
break;
case Opcode::I64X2ExtmulLowI32X4S:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_extmul_low_i32x4");
break;
case Opcode::I64X2ExtmulLowI32X4U:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u64x2_extmul_low_u32x4");
break;
case Opcode::I64X2Mul:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_mul");
break;
case Opcode::I64X2Shl:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_shl");
break;
case Opcode::I64X2ShrS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_shr");
break;
case Opcode::I64X2ShrU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u64x2_shr");
break;
case Opcode::I64X2Sub:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_sub");
break;
case Opcode::F32X4Add:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_add");
break;
case Opcode::F32X4Div:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_div");
break;
case Opcode::F32X4Max:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_max");
break;
case Opcode::F32X4Mul:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_mul");
break;
case Opcode::F32X4Min:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_min");
break;
case Opcode::F32X4PMax:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_pmax");
break;
case Opcode::F32X4PMin:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_pmin");
break;
case Opcode::F32X4Sub:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_sub");
break;
case Opcode::F64X2Add:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_add");
break;
case Opcode::F64X2Div:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_div");
break;
case Opcode::F64X2Max:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_max");
break;
case Opcode::F64X2Mul:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_mul");
break;
case Opcode::F64X2Min:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_min");
break;
case Opcode::F64X2PMax:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_pmax");
break;
case Opcode::F64X2PMin:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_pmin");
break;
case Opcode::F64X2Sub:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_sub");
break;
case Opcode::V128And:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_v128_and");
break;
case Opcode::V128Andnot:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_v128_andnot");
break;
case Opcode::V128Or:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_v128_or");
break;
case Opcode::V128Xor:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_v128_xor");
break;
default:
WABT_UNREACHABLE;
}
}
void CWriter::Write(const CompareExpr& expr) {
switch (expr.opcode) {
case Opcode::I32Eq:
case Opcode::I64Eq:
case Opcode::F32Eq:
case Opcode::F64Eq:
WriteInfixBinaryExpr(expr.opcode, "==", AssignOp::Disallowed);
break;
case Opcode::I32Ne:
case Opcode::I64Ne:
case Opcode::F32Ne:
case Opcode::F64Ne:
WriteInfixBinaryExpr(expr.opcode, "!=", AssignOp::Disallowed);
break;
case Opcode::I32LtS:
case Opcode::I64LtS:
WriteSignedBinaryExpr(expr.opcode, "<");
break;
case Opcode::I32LtU:
case Opcode::I64LtU:
case Opcode::F32Lt:
case Opcode::F64Lt:
WriteInfixBinaryExpr(expr.opcode, "<", AssignOp::Disallowed);
break;
case Opcode::I32LeS:
case Opcode::I64LeS:
WriteSignedBinaryExpr(expr.opcode, "<=");
break;
case Opcode::I32LeU:
case Opcode::I64LeU:
case Opcode::F32Le:
case Opcode::F64Le:
WriteInfixBinaryExpr(expr.opcode, "<=", AssignOp::Disallowed);
break;
case Opcode::I32GtS:
case Opcode::I64GtS:
WriteSignedBinaryExpr(expr.opcode, ">");
break;
case Opcode::I32GtU:
case Opcode::I64GtU:
case Opcode::F32Gt:
case Opcode::F64Gt:
WriteInfixBinaryExpr(expr.opcode, ">", AssignOp::Disallowed);
break;
case Opcode::I32GeS:
case Opcode::I64GeS:
WriteSignedBinaryExpr(expr.opcode, ">=");
break;
case Opcode::I32GeU:
case Opcode::I64GeU:
case Opcode::F32Ge:
case Opcode::F64Ge:
WriteInfixBinaryExpr(expr.opcode, ">=", AssignOp::Disallowed);
break;
case Opcode::I8X16Eq:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_eq");
break;
case Opcode::I8X16GeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_ge");
break;
case Opcode::I8X16GeU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_ge");
break;
case Opcode::I8X16GtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_gt");
break;
case Opcode::I8X16GtU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_gt");
break;
case Opcode::I8X16LeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_le");
break;
case Opcode::I8X16LeU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_le");
break;
case Opcode::I8X16LtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_lt");
break;
case Opcode::I8X16LtU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u8x16_lt");
break;
case Opcode::I8X16Ne:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i8x16_ne");
break;
case Opcode::I16X8Eq:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_eq");
break;
case Opcode::I16X8GeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_ge");
break;
case Opcode::I16X8GeU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_ge");
break;
case Opcode::I16X8GtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_gt");
break;
case Opcode::I16X8GtU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_gt");
break;
case Opcode::I16X8LeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_le");
break;
case Opcode::I16X8LeU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_le");
break;
case Opcode::I16X8LtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_lt");
break;
case Opcode::I16X8LtU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u16x8_lt");
break;
case Opcode::I16X8Ne:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i16x8_ne");
break;
case Opcode::I32X4Eq:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_eq");
break;
case Opcode::I32X4GeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_ge");
break;
case Opcode::I32X4GeU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_ge");
break;
case Opcode::I32X4GtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_gt");
break;
case Opcode::I32X4GtU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_gt");
break;
case Opcode::I32X4LeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_le");
break;
case Opcode::I32X4LeU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_le");
break;
case Opcode::I32X4LtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_lt");
break;
case Opcode::I32X4LtU:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_u32x4_lt");
break;
case Opcode::I32X4Ne:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i32x4_ne");
break;
case Opcode::I64X2Eq:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_eq");
break;
case Opcode::I64X2GeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_ge");
break;
case Opcode::I64X2GtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_gt");
break;
case Opcode::I64X2LeS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_le");
break;
case Opcode::I64X2LtS:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_lt");
break;
case Opcode::I64X2Ne:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_i64x2_ne");
break;
case Opcode::F32X4Eq:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_eq");
break;
case Opcode::F32X4Ge:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_ge");
break;
case Opcode::F32X4Gt:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_gt");
break;
case Opcode::F32X4Le:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_le");
break;
case Opcode::F32X4Lt:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_lt");
break;
case Opcode::F32X4Ne:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f32x4_ne");
break;
case Opcode::F64X2Eq:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_eq");
break;
case Opcode::F64X2Ge:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_ge");
break;
case Opcode::F64X2Gt:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_gt");
break;
case Opcode::F64X2Le:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_le");
break;
case Opcode::F64X2Lt:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_lt");
break;
case Opcode::F64X2Ne:
WritePrefixBinaryExpr(expr.opcode, "simde_wasm_f64x2_ne");
break;
default:
WABT_UNREACHABLE;
}
}
void CWriter::Write(const ConvertExpr& expr) {
switch (expr.opcode) {
case Opcode::I32Eqz:
case Opcode::I64Eqz:
WriteSimpleUnaryExpr(expr.opcode, "!");
break;
case Opcode::I64ExtendI32S:
WriteSimpleUnaryExpr(expr.opcode, "(u64)(s64)(s32)");
break;
case Opcode::I64ExtendI32U:
WriteSimpleUnaryExpr(expr.opcode, "(u64)");
break;
case Opcode::I32WrapI64:
WriteSimpleUnaryExpr(expr.opcode, "(u32)");
break;
case Opcode::I32TruncF32S:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_S_F32");
break;
case Opcode::I64TruncF32S:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_S_F32");
break;
case Opcode::I32TruncF64S:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_S_F64");
break;
case Opcode::I64TruncF64S:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_S_F64");
break;
case Opcode::I32TruncF32U:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_U_F32");
break;
case Opcode::I64TruncF32U:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_U_F32");
break;
case Opcode::I32TruncF64U:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_U_F64");
break;
case Opcode::I64TruncF64U:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_U_F64");
break;
case Opcode::I32TruncSatF32S:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_SAT_S_F32");
break;
case Opcode::I64TruncSatF32S:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_SAT_S_F32");
break;
case Opcode::I32TruncSatF64S:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_SAT_S_F64");
break;
case Opcode::I64TruncSatF64S:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_SAT_S_F64");
break;
case Opcode::I32TruncSatF32U:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_SAT_U_F32");
break;
case Opcode::I64TruncSatF32U:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_SAT_U_F32");
break;
case Opcode::I32TruncSatF64U:
WriteSimpleUnaryExpr(expr.opcode, "I32_TRUNC_SAT_U_F64");
break;
case Opcode::I64TruncSatF64U:
WriteSimpleUnaryExpr(expr.opcode, "I64_TRUNC_SAT_U_F64");
break;
case Opcode::F32ConvertI32S:
WriteSimpleUnaryExpr(expr.opcode, "(f32)(s32)");
break;
case Opcode::F32ConvertI64S:
WriteSimpleUnaryExpr(expr.opcode, "(f32)(s64)");
break;
case Opcode::F32ConvertI32U:
WriteSimpleUnaryExpr(expr.opcode, "(f32)");
break;
case Opcode::F32DemoteF64:
WriteSimpleUnaryExpr(expr.opcode, "(f32)wasm_quiet");
break;
case Opcode::F32ConvertI64U:
// TODO(binji): This needs to be handled specially (see
// wabt_convert_uint64_to_float).
WriteSimpleUnaryExpr(expr.opcode, "(f32)");
break;
case Opcode::F64ConvertI32S:
WriteSimpleUnaryExpr(expr.opcode, "(f64)(s32)");
break;
case Opcode::F64ConvertI64S:
WriteSimpleUnaryExpr(expr.opcode, "(f64)(s64)");
break;
case Opcode::F64ConvertI32U:
WriteSimpleUnaryExpr(expr.opcode, "(f64)");
break;
case Opcode::F64PromoteF32:
WriteSimpleUnaryExpr(expr.opcode, "(f64)wasm_quietf");
break;
case Opcode::F64ConvertI64U:
// TODO(binji): This needs to be handled specially (see
// wabt_convert_uint64_to_double).
WriteSimpleUnaryExpr(expr.opcode, "(f64)");
break;
case Opcode::F32ReinterpretI32:
WriteSimpleUnaryExpr(expr.opcode, "f32_reinterpret_i32");
break;
case Opcode::I32ReinterpretF32:
WriteSimpleUnaryExpr(expr.opcode, "i32_reinterpret_f32");
break;
case Opcode::F64ReinterpretI64:
WriteSimpleUnaryExpr(expr.opcode, "f64_reinterpret_i64");
break;
case Opcode::I64ReinterpretF64:
WriteSimpleUnaryExpr(expr.opcode, "i64_reinterpret_f64");
break;
case Opcode::I32X4TruncSatF32X4S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_trunc_sat_f32x4");
break;
case Opcode::I32X4TruncSatF32X4U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u32x4_trunc_sat_f32x4");
break;
case Opcode::I32X4TruncSatF64X2SZero:
WriteSimpleUnaryExpr(expr.opcode,
"simde_wasm_i32x4_trunc_sat_f64x2_zero");
break;
case Opcode::I32X4TruncSatF64X2UZero:
WriteSimpleUnaryExpr(expr.opcode,
"simde_wasm_u32x4_trunc_sat_f64x2_zero");
break;
case Opcode::F32X4ConvertI32X4S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_convert_i32x4");
break;
case Opcode::F32X4ConvertI32X4U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_convert_u32x4");
break;
case Opcode::F32X4DemoteF64X2Zero:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_demote_f64x2_zero");
break;
case Opcode::F64X2ConvertLowI32X4S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_convert_low_i32x4");
break;
case Opcode::F64X2ConvertLowI32X4U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_convert_low_u32x4");
break;
case Opcode::F64X2PromoteLowF32X4:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_promote_low_f32x4");
break;
default:
WABT_UNREACHABLE;
}
}
void CWriter::Write(const LoadExpr& expr) {
const char* func = nullptr;
// clang-format off
switch (expr.opcode) {
case Opcode::I32Load: func = "i32_load"; break;
case Opcode::I64Load: func = "i64_load"; break;
case Opcode::F32Load: func = "f32_load"; break;
case Opcode::F64Load: func = "f64_load"; break;
case Opcode::I32Load8S: func = "i32_load8_s"; break;
case Opcode::I64Load8S: func = "i64_load8_s"; break;
case Opcode::I32Load8U: func = "i32_load8_u"; break;
case Opcode::I64Load8U: func = "i64_load8_u"; break;
case Opcode::I32Load16S: func = "i32_load16_s"; break;
case Opcode::I64Load16S: func = "i64_load16_s"; break;
case Opcode::I32Load16U: func = "i32_load16_u"; break;
case Opcode::I64Load16U: func = "i64_load16_u"; break;
case Opcode::I64Load32S: func = "i64_load32_s"; break;
case Opcode::I64Load32U: func = "i64_load32_u"; break;
case Opcode::V128Load: func = "v128_load"; break;
case Opcode::V128Load8X8S: func = "i16x8_load8x8"; break;
case Opcode::V128Load8X8U: func = "u16x8_load8x8"; break;
case Opcode::V128Load16X4S: func = "i32x4_load16x4"; break;
case Opcode::V128Load16X4U: func = "u32x4_load16x4"; break;
case Opcode::V128Load32X2S: func = "i64x2_load32x2"; break;
case Opcode::V128Load32X2U: func = "u64x2_load32x2"; break;
default:
WABT_UNREACHABLE;
}
// clang-format on
Memory* memory = module_->memories[module_->GetMemoryIndex(expr.memidx)];
Type result_type = expr.opcode.GetResultType();
Write(StackVar(0, result_type), " = ", func, "(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", (u64)(",
StackVar(0), ")");
if (expr.offset != 0)
Write(" + ", expr.offset, "u");
Write(");", Newline());
DropTypes(1);
PushType(result_type);
}
void CWriter::Write(const StoreExpr& expr) {
const char* func = nullptr;
// clang-format off
switch (expr.opcode) {
case Opcode::I32Store: func = "i32_store"; break;
case Opcode::I64Store: func = "i64_store"; break;
case Opcode::F32Store: func = "f32_store"; break;
case Opcode::F64Store: func = "f64_store"; break;
case Opcode::I32Store8: func = "i32_store8"; break;
case Opcode::I64Store8: func = "i64_store8"; break;
case Opcode::I32Store16: func = "i32_store16"; break;
case Opcode::I64Store16: func = "i64_store16"; break;
case Opcode::I64Store32: func = "i64_store32"; break;
case Opcode::V128Store: func = "v128_store"; break;
default:
WABT_UNREACHABLE;
}
// clang-format on
Memory* memory = module_->memories[module_->GetMemoryIndex(expr.memidx)];
Write(func, "(", ExternalInstancePtr(ModuleFieldType::Memory, memory->name),
", (u64)(", StackVar(1), ")");
if (expr.offset != 0)
Write(" + ", expr.offset);
Write(", ", StackVar(0), ");", Newline());
DropTypes(2);
}
void CWriter::Write(const UnaryExpr& expr) {
switch (expr.opcode) {
case Opcode::I32Clz:
WriteSimpleUnaryExpr(expr.opcode, "I32_CLZ");
break;
case Opcode::I64Clz:
WriteSimpleUnaryExpr(expr.opcode, "I64_CLZ");
break;
case Opcode::I32Ctz:
WriteSimpleUnaryExpr(expr.opcode, "I32_CTZ");
break;
case Opcode::I64Ctz:
WriteSimpleUnaryExpr(expr.opcode, "I64_CTZ");
break;
case Opcode::I32Popcnt:
WriteSimpleUnaryExpr(expr.opcode, "I32_POPCNT");
break;
case Opcode::I64Popcnt:
WriteSimpleUnaryExpr(expr.opcode, "I64_POPCNT");
break;
case Opcode::F32Neg:
case Opcode::F64Neg:
WriteSimpleUnaryExpr(expr.opcode, "-");
break;
case Opcode::F32Abs:
WriteSimpleUnaryExpr(expr.opcode, "wasm_fabsf");
break;
case Opcode::F64Abs:
WriteSimpleUnaryExpr(expr.opcode, "wasm_fabs");
break;
case Opcode::F32Sqrt:
WriteSimpleUnaryExpr(expr.opcode, "wasm_sqrtf");
break;
case Opcode::F64Sqrt:
WriteSimpleUnaryExpr(expr.opcode, "wasm_sqrt");
break;
case Opcode::F32Ceil:
WriteSimpleUnaryExpr(expr.opcode, "wasm_ceilf");
break;
case Opcode::F64Ceil:
WriteSimpleUnaryExpr(expr.opcode, "wasm_ceil");
break;
case Opcode::F32Floor:
WriteSimpleUnaryExpr(expr.opcode, "wasm_floorf");
break;
case Opcode::F64Floor:
WriteSimpleUnaryExpr(expr.opcode, "wasm_floor");
break;
case Opcode::F32Trunc:
WriteSimpleUnaryExpr(expr.opcode, "wasm_truncf");
break;
case Opcode::F64Trunc:
WriteSimpleUnaryExpr(expr.opcode, "wasm_trunc");
break;
case Opcode::F32Nearest:
WriteSimpleUnaryExpr(expr.opcode, "wasm_nearbyintf");
break;
case Opcode::F64Nearest:
WriteSimpleUnaryExpr(expr.opcode, "wasm_nearbyint");
break;
case Opcode::I32Extend8S:
WriteSimpleUnaryExpr(expr.opcode, "(u32)(s32)(s8)(u8)");
break;
case Opcode::I32Extend16S:
WriteSimpleUnaryExpr(expr.opcode, "(u32)(s32)(s16)(u16)");
break;
case Opcode::I64Extend8S:
WriteSimpleUnaryExpr(expr.opcode, "(u64)(s64)(s8)(u8)");
break;
case Opcode::I64Extend16S:
WriteSimpleUnaryExpr(expr.opcode, "(u64)(s64)(s16)(u16)");
break;
case Opcode::I64Extend32S:
WriteSimpleUnaryExpr(expr.opcode, "(u64)(s64)(s32)(u32)");
break;
case Opcode::I8X16Abs:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i8x16_abs");
break;
case Opcode::I8X16AllTrue:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i8x16_all_true");
break;
case Opcode::I8X16Bitmask:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i8x16_bitmask");
break;
case Opcode::I8X16Neg:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i8x16_neg");
break;
case Opcode::I8X16Popcnt:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i8x16_popcnt");
break;
case Opcode::I8X16Splat:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i8x16_splat");
break;
case Opcode::I16X8Abs:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_abs");
break;
case Opcode::I16X8AllTrue:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_all_true");
break;
case Opcode::I16X8Bitmask:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_bitmask");
break;
case Opcode::I16X8ExtaddPairwiseI8X16S:
WriteSimpleUnaryExpr(expr.opcode,
"simde_wasm_i16x8_extadd_pairwise_i8x16");
break;
case Opcode::I16X8ExtaddPairwiseI8X16U:
WriteSimpleUnaryExpr(expr.opcode,
"simde_wasm_u16x8_extadd_pairwise_u8x16");
break;
case Opcode::I16X8ExtendHighI8X16S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_extend_high_i8x16");
break;
case Opcode::I16X8ExtendHighI8X16U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u16x8_extend_high_u8x16");
break;
case Opcode::I16X8ExtendLowI8X16S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_extend_low_i8x16");
break;
case Opcode::I16X8ExtendLowI8X16U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u16x8_extend_low_u8x16");
break;
case Opcode::I16X8Neg:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_neg");
break;
case Opcode::I16X8Splat:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i16x8_splat");
break;
case Opcode::I32X4Abs:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_abs");
break;
case Opcode::I32X4AllTrue:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_all_true");
break;
case Opcode::I32X4Bitmask:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_bitmask");
break;
case Opcode::I32X4ExtaddPairwiseI16X8S:
WriteSimpleUnaryExpr(expr.opcode,
"simde_wasm_i32x4_extadd_pairwise_i16x8");
break;
case Opcode::I32X4ExtaddPairwiseI16X8U:
WriteSimpleUnaryExpr(expr.opcode,
"simde_wasm_u32x4_extadd_pairwise_u16x8");
break;
case Opcode::I32X4ExtendHighI16X8S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_extend_high_i16x8");
break;
case Opcode::I32X4ExtendHighI16X8U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u32x4_extend_high_u16x8");
break;
case Opcode::I32X4ExtendLowI16X8S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_extend_low_i16x8");
break;
case Opcode::I32X4ExtendLowI16X8U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u32x4_extend_low_u16x8");
break;
case Opcode::I32X4Neg:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_neg");
break;
case Opcode::I32X4Splat:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i32x4_splat");
break;
case Opcode::I64X2Abs:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_abs");
break;
case Opcode::I64X2AllTrue:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_all_true");
break;
case Opcode::I64X2Bitmask:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_bitmask");
break;
case Opcode::I64X2ExtendHighI32X4S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_extend_high_i32x4");
break;
case Opcode::I64X2ExtendHighI32X4U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u64x2_extend_high_u32x4");
break;
case Opcode::I64X2ExtendLowI32X4S:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_extend_low_i32x4");
break;
case Opcode::I64X2ExtendLowI32X4U:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_u64x2_extend_low_u32x4");
break;
case Opcode::I64X2Neg:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_neg");
break;
case Opcode::I64X2Splat:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_i64x2_splat");
break;
case Opcode::F32X4Abs:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_abs");
break;
case Opcode::F32X4Ceil:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_ceil");
break;
case Opcode::F32X4Floor:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_floor");
break;
case Opcode::F32X4Nearest:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_nearest");
break;
case Opcode::F32X4Neg:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_neg");
break;
case Opcode::F32X4Splat:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_splat");
break;
case Opcode::F32X4Sqrt:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_sqrt");
break;
case Opcode::F32X4Trunc:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f32x4_trunc");
break;
case Opcode::F64X2Abs:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_abs");
break;
case Opcode::F64X2Ceil:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_ceil");
break;
case Opcode::F64X2Floor:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_floor");
break;
case Opcode::F64X2Nearest:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_nearest");
break;
case Opcode::F64X2Neg:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_neg");
break;
case Opcode::F64X2Splat:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_splat");
break;
case Opcode::F64X2Sqrt:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_sqrt");
break;
case Opcode::F64X2Trunc:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_f64x2_trunc");
break;
case Opcode::V128AnyTrue:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_v128_any_true");
break;
case Opcode::V128Not:
WriteSimpleUnaryExpr(expr.opcode, "simde_wasm_v128_not");
break;
default:
WABT_UNREACHABLE;
}
}
void CWriter::Write(const TernaryExpr& expr) {
switch (expr.opcode) {
case Opcode::V128BitSelect: {
Type result_type = expr.opcode.GetResultType();
Write(StackVar(2, result_type), " = ", "simde_wasm_v128_bitselect", "(",
StackVar(2), ", ", StackVar(1), ", ", StackVar(0), ");", Newline());
DropTypes(3);
PushType(result_type);
break;
}
default:
WABT_UNREACHABLE;
}
}
void CWriter::Write(const SimdLaneOpExpr& expr) {
Type result_type = expr.opcode.GetResultType();
switch (expr.opcode) {
case Opcode::I8X16ExtractLaneS: {
Write(StackVar(0, result_type), " = simde_wasm_i8x16_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::I8X16ExtractLaneU: {
Write(StackVar(0, result_type), " = simde_wasm_u8x16_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::I16X8ExtractLaneS: {
Write(StackVar(0, result_type), " = simde_wasm_i16x8_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::I16X8ExtractLaneU: {
Write(StackVar(0, result_type), " = simde_wasm_u16x8_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::I32X4ExtractLane: {
Write(StackVar(0, result_type), " = simde_wasm_i32x4_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::I64X2ExtractLane: {
Write(StackVar(0, result_type), " = simde_wasm_i64x2_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::F32X4ExtractLane: {
Write(StackVar(0, result_type), " = simde_wasm_f32x4_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::F64X2ExtractLane: {
Write(StackVar(0, result_type), " = simde_wasm_f64x2_extract_lane(",
StackVar(0), ", ", expr.val, ");", Newline());
DropTypes(1);
break;
}
case Opcode::I8X16ReplaceLane: {
Write(StackVar(1, result_type), " = simde_wasm_i8x16_replace_lane(",
StackVar(1), ", ", expr.val, ", ", StackVar(0), ");", Newline());
DropTypes(2);
break;
}
case Opcode::I16X8ReplaceLane: {
Write(StackVar(1, result_type), " = simde_wasm_i16x8_replace_lane(",
StackVar(1), ", ", expr.val, ", ", StackVar(0), ");", Newline());
DropTypes(2);
break;
}
case Opcode::I32X4ReplaceLane: {
Write(StackVar(1, result_type), " = simde_wasm_i32x4_replace_lane(",
StackVar(1), ", ", expr.val, ", ", StackVar(0), ");", Newline());
DropTypes(2);
break;
}
case Opcode::I64X2ReplaceLane: {
Write(StackVar(1, result_type), " = simde_wasm_i64x2_replace_lane(",
StackVar(1), ", ", expr.val, ", ", StackVar(0), ");", Newline());
DropTypes(2);
break;
}
case Opcode::F32X4ReplaceLane: {
Write(StackVar(1, result_type), " = simde_wasm_f32x4_replace_lane(",
StackVar(1), ", ", expr.val, ", ", StackVar(0), ");", Newline());
DropTypes(2);
break;
}
case Opcode::F64X2ReplaceLane: {
Write(StackVar(1, result_type), " = simde_wasm_f64x2_replace_lane(",
StackVar(1), ", ", expr.val, ", ", StackVar(0), ");", Newline());
DropTypes(2);
break;
}
default:
WABT_UNREACHABLE;
}
PushType(result_type);
}
void CWriter::Write(const SimdLoadLaneExpr& expr) {
const char* func = nullptr;
// clang-format off
switch (expr.opcode) {
case Opcode::V128Load8Lane: func = "v128_load8_lane"; break;
case Opcode::V128Load16Lane: func = "v128_load16_lane"; break;
case Opcode::V128Load32Lane: func = "v128_load32_lane"; break;
case Opcode::V128Load64Lane: func = "v128_load64_lane"; break;
default:
WABT_UNREACHABLE;
}
// clang-format on
Memory* memory = module_->memories[module_->GetMemoryIndex(expr.memidx)];
Type result_type = expr.opcode.GetResultType();
Write(StackVar(1, result_type), " = ", func, expr.val, "(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", (u64)(",
StackVar(1), ")");
if (expr.offset != 0)
Write(" + ", expr.offset, "u");
Write(", ", StackVar(0));
Write(");", Newline());
DropTypes(2);
PushType(result_type);
}
void CWriter::Write(const SimdStoreLaneExpr& expr) {
const char* func = nullptr;
// clang-format off
switch (expr.opcode) {
case Opcode::V128Store8Lane: func = "v128_store8_lane"; break;
case Opcode::V128Store16Lane: func = "v128_store16_lane"; break;
case Opcode::V128Store32Lane: func = "v128_store32_lane"; break;
case Opcode::V128Store64Lane: func = "v128_store64_lane"; break;
default:
WABT_UNREACHABLE;
}
// clang-format on
Memory* memory = module_->memories[module_->GetMemoryIndex(expr.memidx)];
Write(func, expr.val, "(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", (u64)(",
StackVar(1), ")");
if (expr.offset != 0)
Write(" + ", expr.offset, "u");
Write(", ", StackVar(0));
Write(");", Newline());
DropTypes(2);
}
void CWriter::Write(const SimdShuffleOpExpr& expr) {
Type result_type = expr.opcode.GetResultType();
switch (expr.opcode) {
case Opcode::I8X16Shuffle: {
Write(StackVar(1, result_type), " = simde_wasm_i8x16_shuffle(",
StackVar(1), ", ", StackVar(0), ", ", expr.val.u8(0), ", ",
expr.val.u8(1), ", ", expr.val.u8(2), ", ", expr.val.u8(3), ", ",
expr.val.u8(4), ", ", expr.val.u8(5), ", ", expr.val.u8(6), ", ",
expr.val.u8(7), ", ", expr.val.u8(8), ", ", expr.val.u8(9), ", ",
expr.val.u8(10), ", ", expr.val.u8(11), ", ", expr.val.u8(12), ", ",
expr.val.u8(13), ", ", expr.val.u8(14), ", ", expr.val.u8(15), ");",
Newline());
DropTypes(2);
break;
}
default:
WABT_UNREACHABLE;
}
PushType(result_type);
}
void CWriter::Write(const LoadSplatExpr& expr) {
Memory* memory = module_->memories[module_->GetMemoryIndex(expr.memidx)];
const char* func = nullptr;
// clang-format off
switch (expr.opcode) {
case Opcode::V128Load8Splat: func = "v128_load8_splat"; break;
case Opcode::V128Load16Splat: func = "v128_load16_splat"; break;
case Opcode::V128Load32Splat: func = "v128_load32_splat"; break;
case Opcode::V128Load64Splat: func = "v128_load64_splat"; break;
default:
WABT_UNREACHABLE;
}
// clang-format on
Type result_type = expr.opcode.GetResultType();
Write(StackVar(0, result_type), " = ", func, "(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", (u64)(",
StackVar(0), ")");
if (expr.offset != 0)
Write(" + ", expr.offset);
Write(");", Newline());
DropTypes(1);
PushType(result_type);
}
void CWriter::Write(const LoadZeroExpr& expr) {
Memory* memory = module_->memories[module_->GetMemoryIndex(expr.memidx)];
const char* func = nullptr;
// clang-format off
switch (expr.opcode) {
case Opcode::V128Load32Zero: func = "v128_load32_zero"; break;
case Opcode::V128Load64Zero: func = "v128_load64_zero"; break;
default:
WABT_UNREACHABLE;
}
// clang-format on
Type result_type = expr.opcode.GetResultType();
Write(StackVar(0, result_type), " = ", func, "(",
ExternalInstancePtr(ModuleFieldType::Memory, memory->name), ", (u64)(",
StackVar(0), ")");
if (expr.offset != 0)
Write(" + ", expr.offset);
Write(");", Newline());
DropTypes(1);
PushType(result_type);
}
void CWriter::ReserveExportNames() {
for (const Export* export_ : module_->exports) {
ReserveExportName(export_->name);
}
}
void CWriter::WriteCHeader() {
ReserveExportNames();
stream_ = h_stream_;
std::string guard = GenerateHeaderGuard();
Write("/* Automatically generated by wasm2c */", Newline());
Write("#ifndef ", guard, Newline());
Write("#define ", guard, Newline());
Write(Newline());
ComputeSimdScope();
WriteHeaderIncludes();
Write(s_header_top);
Write(Newline());
WriteModuleInstance();
WriteInitDecl();
WriteFreeDecl();
WriteGetFuncTypeDecl();
WriteMultivalueTypes();
WriteImports();
WriteImportProperties(CWriterPhase::Declarations);
WriteExports(CWriterPhase::Declarations);
Write(Newline());
Write(s_header_bottom);
Write(Newline(), "#endif /* ", guard, " */", Newline());
}
void CWriter::WriteCSource() {
/* Write the "top" to h_impl stream */
stream_ = h_impl_stream_;
Write("/* Automatically generated by wasm2c */", Newline());
WriteSourceTop();
/* Write module-wide declarations to impl header */
WriteFuncTypeDecls();
WriteTagTypes();
WriteTagDecls();
WriteFuncDeclarations();
WriteDataInitializerDecls();
WriteElemInitializerDecls();
/* Write the module-wide material to the first output stream */
stream_ = c_streams_.front();
WriteMultiCTop();
WriteFuncTypes();
WriteTags();
WriteGlobalInitializers();
WriteDataInitializers();
WriteElemInitializers();
WriteExports(CWriterPhase::Definitions);
WriteInitInstanceImport();
WriteImportProperties(CWriterPhase::Definitions);
WriteInit();
WriteFree();
WriteGetFuncType();
/* Write function bodies across the different output streams */
WriteFuncs();
/* For any empty .c output, write a dummy typedef to avoid gcc warning */
WriteMultiCTopEmpty();
}
Result CWriter::WriteModule(const Module& module) {
WABT_USE(options_);
module_ = &module;
WriteCHeader();
WriteCSource();
return result_;
}
// static
const char* CWriter::GetReferenceTypeName(const Type& type) {
switch (type) {
case Type::FuncRef:
return "funcref";
case Type::ExternRef:
return "externref";
default:
WABT_UNREACHABLE;
}
}
// static
const char* CWriter::GetReferenceNullValue(const Type& type) {
switch (type) {
case Type::FuncRef:
return "wasm_rt_funcref_null_value";
case Type::ExternRef:
return "wasm_rt_externref_null_value";
default:
WABT_UNREACHABLE;
}
}
const char* CWriter::InternalSymbolScope() const {
if (c_streams_.size() == 1) {
return "static ";
} else {
return "";
}
}
} // end anonymous namespace
Result WriteC(std::vector<Stream*>&& c_streams,
Stream* h_stream,
Stream* h_impl_stream,
const char* header_name,
const char* header_impl_name,
const Module* module,
const WriteCOptions& options) {
CWriter c_writer(std::move(c_streams), h_stream, h_impl_stream, header_name,
header_impl_name, options);
return c_writer.WriteModule(*module);
}
} // namespace wabt