Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include "RetainedDisplayListBuilder.h"
#include "mozilla/Attributes.h"
#include "mozilla/StaticPrefs_layout.h"
#include "nsIFrame.h"
#include "nsIFrameInlines.h"
#include "nsIScrollableFrame.h"
#include "nsPlaceholderFrame.h"
#include "nsSubDocumentFrame.h"
#include "nsViewManager.h"
#include "nsCanvasFrame.h"
#include "mozilla/AutoRestore.h"
#include "mozilla/DisplayPortUtils.h"
#include "mozilla/PresShell.h"
#include "mozilla/ProfilerLabels.h"
/**
* Code for doing display list building for a modified subset of the window,
* and then merging it into the existing display list (for the full window).
*
* The approach primarily hinges on the observation that the 'true' ordering
* of display items is represented by a DAG (only items that intersect in 2d
* space have a defined ordering). Our display list is just one of a many
* possible linear representations of this ordering.
*
* Each time a frame changes (gets a new ComputedStyle, or has a size/position
* change), we schedule a paint (as we do currently), but also reord the frame
* that changed.
*
* When the next paint occurs we union the overflow areas (in screen space) of
* the changed frames, and compute a rect/region that contains all changed
* items. We then build a display list just for this subset of the screen and
* merge it into the display list from last paint.
*
* Any items that exist in one list and not the other must not have a defined
* ordering in the DAG, since they need to intersect to have an ordering and
* we would have built both in the new list if they intersected. Given that, we
* can align items that appear in both lists, and any items that appear between
* matched items can be inserted into the merged list in any order.
*
* Frames that are a stacking context, containing blocks for position:fixed
* descendants, and don't have any continuations (see
* CanStoreDisplayListBuildingRect) trigger recursion into the algorithm with
* separate retaining decisions made.
*
* RDL defines the concept of an AnimatedGeometryRoot (AGR), the nearest
* ancestor frame which can be moved asynchronously on the compositor thread.
* These are currently nsDisplayItems which return true from CanMoveAsync
* (animated nsDisplayTransform and nsDisplayStickyPosition) and
* ActiveScrolledRoots.
*
* For each context that we run the retaining algorithm, there can only be
* mutations to one AnimatedGeometryRoot. This is because we are unable to
* reason about intersections of items that might then move relative to each
* other without RDL running again. If there are mutations to multiple
* AnimatedGeometryRoots, then we bail out and rebuild all the items in the
* context.
*
* Otherwise, when mutations are restricted to a single AGR, we pre-process the
* old display list and mark the frames for all existing (unmodified!) items
* that belong to a different AGR and ensure that we rebuild those items for
* correct sorting with the modified ones.
*/
namespace mozilla {
RetainedDisplayListData::RetainedDisplayListData()
: mModifiedFrameLimit(
StaticPrefs::layout_display_list_rebuild_frame_limit()) {}
void RetainedDisplayListData::AddModifiedFrame(nsIFrame* aFrame) {
MOZ_ASSERT(!aFrame->IsFrameModified());
Flags(aFrame) += RetainedDisplayListData::FrameFlag::Modified;
aFrame->SetFrameIsModified(true);
mModifiedFrameCount++;
}
static void MarkFramesWithItemsAndImagesModified(nsDisplayList* aList) {
for (nsDisplayItem* i : *aList) {
if (!i->HasDeletedFrame() && i->CanBeReused() &&
!i->Frame()->IsFrameModified()) {
// If we have existing cached geometry for this item, then check that for
// whether we need to invalidate for a sync decode. If we don't, then
// use the item's flags.
// XXX: handle webrender case by looking up retained data for the item
// and checking InvalidateForSyncDecodeImages
bool invalidate = false;
if (!(i->GetFlags() & TYPE_RENDERS_NO_IMAGES)) {
invalidate = true;
}
if (invalidate) {
DL_LOGV("RDL - Invalidating item %p (%s)", i, i->Name());
i->FrameForInvalidation()->MarkNeedsDisplayItemRebuild();
if (i->GetDependentFrame()) {
i->GetDependentFrame()->MarkNeedsDisplayItemRebuild();
}
}
}
if (i->GetChildren()) {
MarkFramesWithItemsAndImagesModified(i->GetChildren());
}
}
}
static nsIFrame* SelectAGRForFrame(nsIFrame* aFrame, nsIFrame* aParentAGR) {
if (!aFrame->IsStackingContext() || !aFrame->IsFixedPosContainingBlock()) {
return aParentAGR;
}
if (!aFrame->HasOverrideDirtyRegion()) {
return nullptr;
}
nsDisplayListBuilder::DisplayListBuildingData* data =
aFrame->GetProperty(nsDisplayListBuilder::DisplayListBuildingRect());
return data && data->mModifiedAGR ? data->mModifiedAGR : nullptr;
}
void RetainedDisplayListBuilder::AddSizeOfIncludingThis(
nsWindowSizes& aSizes) const {
aSizes.mLayoutRetainedDisplayListSize += aSizes.mState.mMallocSizeOf(this);
mBuilder.AddSizeOfExcludingThis(aSizes);
mList.AddSizeOfExcludingThis(aSizes);
}
bool AnyContentAncestorModified(nsIFrame* aFrame, nsIFrame* aStopAtFrame) {
nsIFrame* f = aFrame;
while (f) {
if (f->IsFrameModified()) {
return true;
}
if (aStopAtFrame && f == aStopAtFrame) {
break;
}
f = nsLayoutUtils::GetDisplayListParent(f);
}
return false;
}
// Removes any display items that belonged to a frame that was deleted,
// and mark frames that belong to a different AGR so that get their
// items built again.
// TODO: We currently descend into all children even if we don't have an AGR
// to mark, as child stacking contexts might. It would be nice if we could
// jump into those immediately rather than walking the entire thing.
bool RetainedDisplayListBuilder::PreProcessDisplayList(
RetainedDisplayList* aList, nsIFrame* aAGR, PartialUpdateResult& aUpdated,
nsIFrame* aAsyncAncestor, const ActiveScrolledRoot* aAsyncAncestorASR,
nsIFrame* aOuterFrame, uint32_t aCallerKey, uint32_t aNestingDepth,
bool aKeepLinked) {
// The DAG merging algorithm does not have strong mechanisms in place to keep
// the complexity of the resulting DAG under control. In some cases we can
// build up edges very quickly. Detect those cases and force a full display
// list build if we hit them.
static const uint32_t kMaxEdgeRatio = 5;
const bool initializeDAG = !aList->mDAG.Length();
if (!aKeepLinked && !initializeDAG &&
aList->mDAG.mDirectPredecessorList.Length() >
(aList->mDAG.mNodesInfo.Length() * kMaxEdgeRatio)) {
return false;
}
// If we had aKeepLinked=true for this list on the previous paint, then
// mOldItems will already be initialized as it won't have been consumed during
// a merge.
const bool initializeOldItems = aList->mOldItems.IsEmpty();
if (initializeOldItems) {
aList->mOldItems.SetCapacity(aList->Length());
} else {
MOZ_RELEASE_ASSERT(!initializeDAG);
}
MOZ_RELEASE_ASSERT(
initializeDAG ||
aList->mDAG.Length() ==
(initializeOldItems ? aList->Length() : aList->mOldItems.Length()));
nsDisplayList out(Builder());
size_t i = 0;
while (nsDisplayItem* item = aList->RemoveBottom()) {
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
item->SetMergedPreProcessed(false, true);
#endif
// If we have a previously initialized old items list, then it can differ
// from the current list due to items removed for having a deleted frame.
// We can't easily remove these, since the DAG has entries for those indices
// and it's hard to rewrite in-place.
// Skip over entries with no current item to keep the iterations in sync.
if (!initializeOldItems) {
while (!aList->mOldItems[i].mItem) {
i++;
}
}
if (initializeDAG) {
if (i == 0) {
aList->mDAG.AddNode(Span<const MergedListIndex>());
} else {
MergedListIndex previous(i - 1);
aList->mDAG.AddNode(Span<const MergedListIndex>(&previous, 1));
}
}
if (!item->CanBeReused() || item->HasDeletedFrame() ||
AnyContentAncestorModified(item->FrameForInvalidation(), aOuterFrame)) {
if (initializeOldItems) {
aList->mOldItems.AppendElement(OldItemInfo(nullptr));
} else {
MOZ_RELEASE_ASSERT(aList->mOldItems[i].mItem == item);
aList->mOldItems[i].mItem = nullptr;
}
item->Destroy(&mBuilder);
Metrics()->mRemovedItems++;
i++;
aUpdated = PartialUpdateResult::Updated;
continue;
}
if (initializeOldItems) {
aList->mOldItems.AppendElement(OldItemInfo(item));
}
// If we're not going to keep the list linked, then this old item entry
// is the only pointer to the item. Let it know that it now strongly
// owns the item, so it can destroy it if it goes away.
aList->mOldItems[i].mOwnsItem = !aKeepLinked;
item->SetOldListIndex(aList, OldListIndex(i), aCallerKey, aNestingDepth);
nsIFrame* f = item->Frame();
if (item->GetChildren()) {
// If children inside this list were invalid, then we'd have walked the
// ancestors and set ForceDescendIntoVisible on the current frame. If an
// ancestor is modified, then we'll throw this away entirely. Either way,
// we won't need to run merging on this sublist, and we can keep the items
// linked into their display list.
// The caret can move without invalidating, but we always set the force
// descend into frame state bit on that frame, so check for that too.
// TODO: AGR marking below can call MarkFrameForDisplayIfVisible and make
// us think future siblings need to be merged, even though we don't really
// need to.
bool keepLinked = aKeepLinked;
nsIFrame* invalid = item->FrameForInvalidation();
if (!invalid->ForceDescendIntoIfVisible() &&
!invalid->HasAnyStateBits(NS_FRAME_FORCE_DISPLAY_LIST_DESCEND_INTO)) {
keepLinked = true;
}
// If this item's frame is an AGR (can be moved asynchronously by the
// compositor), then use that frame for descendants. Also pass the ASR
// for that item, so that descendants can compare to see if any new
// ASRs have been pushed since.
nsIFrame* asyncAncestor = aAsyncAncestor;
const ActiveScrolledRoot* asyncAncestorASR = aAsyncAncestorASR;
if (item->CanMoveAsync()) {
asyncAncestor = item->Frame();
asyncAncestorASR = item->GetActiveScrolledRoot();
}
if (!PreProcessDisplayList(
item->GetChildren(), SelectAGRForFrame(f, aAGR), aUpdated,
asyncAncestor, asyncAncestorASR, item->Frame(),
item->GetPerFrameKey(), aNestingDepth + 1, keepLinked)) {
MOZ_RELEASE_ASSERT(
!aKeepLinked,
"Can't early return since we need to move the out list back");
return false;
}
}
// TODO: We should be able to check the clipped bounds relative
// to the common AGR (of both the existing item and the invalidated
// frame) and determine if they can ever intersect.
// TODO: We only really need to build the ancestor container item that is a
// sibling of the changed thing to get correct ordering. The changed content
// is a frame though, and it's hard to map that to container items in this
// list.
// If an ancestor display item is an AGR, and our ASR matches the ASR
// of that item, then there can't have been any new ASRs pushed since that
// item, so that item is our AGR. Otherwise, our AGR is our ASR.
// TODO: If aAsyncAncestorASR is non-null, then item->GetActiveScrolledRoot
// should be the same or a descendant and also non-null. Unfortunately an
// RDL bug means this can be wrong for sticky items after a partial update,
// so we have to work around it. Bug 1730749 and bug 1730826 should resolve
// this.
nsIFrame* agrFrame = nullptr;
if (aAsyncAncestorASR == item->GetActiveScrolledRoot() ||
!item->GetActiveScrolledRoot()) {
agrFrame = aAsyncAncestor;
} else {
agrFrame =
item->GetActiveScrolledRoot()->mScrollableFrame->GetScrolledFrame();
}
if (aAGR && agrFrame != aAGR) {
mBuilder.MarkFrameForDisplayIfVisible(f, RootReferenceFrame());
}
// If we're going to keep this linked list and not merge it, then mark the
// item as used and put it back into the list.
if (aKeepLinked) {
item->SetReused(true);
if (item->GetChildren()) {
item->UpdateBounds(Builder());
}
if (item->GetType() == DisplayItemType::TYPE_SUBDOCUMENT) {
IncrementSubDocPresShellPaintCount(item);
}
out.AppendToTop(item);
}
i++;
}
MOZ_RELEASE_ASSERT(aList->mOldItems.Length() == aList->mDAG.Length());
if (aKeepLinked) {
aList->AppendToTop(&out);
}
return true;
}
void IncrementPresShellPaintCount(nsDisplayListBuilder* aBuilder,
nsDisplayItem* aItem) {
MOZ_ASSERT(aItem->GetType() == DisplayItemType::TYPE_SUBDOCUMENT);
nsSubDocumentFrame* subDocFrame =
static_cast<nsDisplaySubDocument*>(aItem)->SubDocumentFrame();
MOZ_ASSERT(subDocFrame);
PresShell* presShell = subDocFrame->GetSubdocumentPresShellForPainting(0);
MOZ_ASSERT(presShell);
aBuilder->IncrementPresShellPaintCount(presShell);
}
void RetainedDisplayListBuilder::IncrementSubDocPresShellPaintCount(
nsDisplayItem* aItem) {
IncrementPresShellPaintCount(&mBuilder, aItem);
}
static Maybe<const ActiveScrolledRoot*> SelectContainerASR(
const DisplayItemClipChain* aClipChain, const ActiveScrolledRoot* aItemASR,
Maybe<const ActiveScrolledRoot*>& aContainerASR) {
const ActiveScrolledRoot* itemClipASR =
aClipChain ? aClipChain->mASR : nullptr;
MOZ_DIAGNOSTIC_ASSERT(!aClipChain || aClipChain->mOnStack || !itemClipASR ||
itemClipASR->mScrollableFrame);
const ActiveScrolledRoot* finiteBoundsASR =
ActiveScrolledRoot::PickDescendant(itemClipASR, aItemASR);
if (!aContainerASR) {
return Some(finiteBoundsASR);
}
return Some(
ActiveScrolledRoot::PickAncestor(*aContainerASR, finiteBoundsASR));
}
static void UpdateASR(nsDisplayItem* aItem,
Maybe<const ActiveScrolledRoot*>& aContainerASR) {
if (!aContainerASR) {
return;
}
nsDisplayWrapList* wrapList = aItem->AsDisplayWrapList();
if (!wrapList) {
aItem->SetActiveScrolledRoot(*aContainerASR);
return;
}
wrapList->SetActiveScrolledRoot(ActiveScrolledRoot::PickAncestor(
wrapList->GetFrameActiveScrolledRoot(), *aContainerASR));
}
static void CopyASR(nsDisplayItem* aOld, nsDisplayItem* aNew) {
aNew->SetActiveScrolledRoot(aOld->GetActiveScrolledRoot());
}
OldItemInfo::OldItemInfo(nsDisplayItem* aItem)
: mItem(aItem), mUsed(false), mDiscarded(false), mOwnsItem(false) {
if (mItem) {
// Clear cached modified frame state when adding an item to the old list.
mItem->SetModifiedFrame(false);
}
}
void OldItemInfo::AddedMatchToMergedList(RetainedDisplayListBuilder* aBuilder,
MergedListIndex aIndex) {
AddedToMergedList(aIndex);
}
void OldItemInfo::Discard(RetainedDisplayListBuilder* aBuilder,
nsTArray<MergedListIndex>&& aDirectPredecessors) {
MOZ_ASSERT(!IsUsed());
mUsed = mDiscarded = true;
mDirectPredecessors = std::move(aDirectPredecessors);
if (mItem) {
MOZ_ASSERT(mOwnsItem);
mItem->Destroy(aBuilder->Builder());
aBuilder->Metrics()->mRemovedItems++;
}
mItem = nullptr;
}
bool OldItemInfo::IsChanged() {
return !mItem || !mItem->CanBeReused() || mItem->HasDeletedFrame();
}
/**
* A C++ implementation of Markus Stange's merge-dags algorithm.
*
* MergeState handles combining a new list of display items into an existing
* DAG and computes the new DAG in a single pass.
* Each time we add a new item, we resolve all dependencies for it, so that the
* resulting list and DAG are built in topological ordering.
*/
class MergeState {
public:
MergeState(RetainedDisplayListBuilder* aBuilder,
RetainedDisplayList& aOldList, nsDisplayItem* aOuterItem)
: mBuilder(aBuilder),
mOldList(&aOldList),
mOldItems(std::move(aOldList.mOldItems)),
mOldDAG(
std::move(*reinterpret_cast<DirectedAcyclicGraph<OldListUnits>*>(
&aOldList.mDAG))),
mMergedItems(aBuilder->Builder()),
mOuterItem(aOuterItem),
mResultIsModified(false) {
mMergedDAG.EnsureCapacityFor(mOldDAG);
MOZ_RELEASE_ASSERT(mOldItems.Length() == mOldDAG.Length());
}
Maybe<MergedListIndex> ProcessItemFromNewList(
nsDisplayItem* aNewItem, const Maybe<MergedListIndex>& aPreviousItem) {
OldListIndex oldIndex;
MOZ_DIAGNOSTIC_ASSERT(aNewItem->HasModifiedFrame() ==
HasModifiedFrame(aNewItem));
if (!aNewItem->HasModifiedFrame() &&
HasMatchingItemInOldList(aNewItem, &oldIndex)) {
mBuilder->Metrics()->mRebuiltItems++;
nsDisplayItem* oldItem = mOldItems[oldIndex.val].mItem;
MOZ_DIAGNOSTIC_ASSERT(oldItem->GetPerFrameKey() ==
aNewItem->GetPerFrameKey() &&
oldItem->Frame() == aNewItem->Frame());
if (!mOldItems[oldIndex.val].IsChanged()) {
MOZ_DIAGNOSTIC_ASSERT(!mOldItems[oldIndex.val].IsUsed());
nsDisplayItem* destItem;
if (ShouldUseNewItem(aNewItem)) {
destItem = aNewItem;
} else {
destItem = oldItem;
// The building rect can depend on the overflow rect (when the parent
// frame is position:fixed), which can change without invalidating
// the frame/items. If we're using the old item, copy the building
// rect across from the new item.
oldItem->SetBuildingRect(aNewItem->GetBuildingRect());
}
MergeChildLists(aNewItem, oldItem, destItem);
AutoTArray<MergedListIndex, 2> directPredecessors =
ProcessPredecessorsOfOldNode(oldIndex);
MergedListIndex newIndex = AddNewNode(
destItem, Some(oldIndex), directPredecessors, aPreviousItem);
mOldItems[oldIndex.val].AddedMatchToMergedList(mBuilder, newIndex);
if (destItem == aNewItem) {
oldItem->Destroy(mBuilder->Builder());
} else {
aNewItem->Destroy(mBuilder->Builder());
}
return Some(newIndex);
}
}
mResultIsModified = true;
return Some(AddNewNode(aNewItem, Nothing(), Span<MergedListIndex>(),
aPreviousItem));
}
void MergeChildLists(nsDisplayItem* aNewItem, nsDisplayItem* aOldItem,
nsDisplayItem* aOutItem) {
if (!aOutItem->GetChildren()) {
return;
}
Maybe<const ActiveScrolledRoot*> containerASRForChildren;
nsDisplayList empty(mBuilder->Builder());
const bool modified = mBuilder->MergeDisplayLists(
aNewItem ? aNewItem->GetChildren() : &empty, aOldItem->GetChildren(),
aOutItem->GetChildren(), containerASRForChildren, aOutItem);
if (modified) {
aOutItem->InvalidateCachedChildInfo(mBuilder->Builder());
UpdateASR(aOutItem, containerASRForChildren);
mResultIsModified = true;
} else if (aOutItem == aNewItem) {
// If nothing changed, but we copied the contents across to
// the new item, then also copy the ASR data.
CopyASR(aOldItem, aNewItem);
}
// Ideally we'd only UpdateBounds if something changed, but
// nsDisplayWrapList also uses this to update the clip chain for the
// current ASR, which gets reset during RestoreState(), so we always need
// to run it again.
aOutItem->UpdateBounds(mBuilder->Builder());
}
bool ShouldUseNewItem(nsDisplayItem* aNewItem) {
// Generally we want to use the old item when the frame isn't marked as
// modified so that any cached information on the item (or referencing the
// item) gets retained. Quite a few FrameLayerBuilder performance
// improvements benefit by this. Sometimes, however, we can end up where the
// new item paints something different from the old item, even though we
// haven't modified the frame, and it's hard to fix. In these cases we just
// always use the new item to be safe.
DisplayItemType type = aNewItem->GetType();
if (type == DisplayItemType::TYPE_CANVAS_BACKGROUND_COLOR ||
type == DisplayItemType::TYPE_SOLID_COLOR) {
// The canvas background color item can paint the color from another
// frame, and even though we schedule a paint, we don't mark the canvas
// frame as invalid.
return true;
}
if (type == DisplayItemType::TYPE_TABLE_BORDER_COLLAPSE) {
// We intentionally don't mark the root table frame as modified when a
// subframe changes, even though the border collapse item for the root
// frame is what paints the changed border. Marking the root frame as
// modified would rebuild display items for the whole table area, and we
// don't want that.
return true;
}
if (type == DisplayItemType::TYPE_TEXT_OVERFLOW) {
// Text overflow marker items are created with the wrapping block as their
// frame, and have an index value to note which line they are created for.
// Their rendering can change if the items on that line change, which may
// not mark the block as modified. We rebuild them if we build any item on
// the line, so we should always get new items if they might have changed
// rendering, and it's easier to just use the new items rather than
// computing if we actually need them.
return true;
}
if (type == DisplayItemType::TYPE_SUBDOCUMENT ||
type == DisplayItemType::TYPE_STICKY_POSITION) {
// nsDisplaySubDocument::mShouldFlatten can change without an invalidation
// (and is the reason we unconditionally build the subdocument item), so
// always use the new one to make sure we get the right value.
// Same for |nsDisplayStickyPosition::mShouldFlatten|.
return true;
}
if (type == DisplayItemType::TYPE_CARET) {
// The caret can change position while still being owned by the same frame
// and we don't invalidate in that case. Use the new version since the
// changed bounds are needed for DLBI.
return true;
}
if (type == DisplayItemType::TYPE_MASK ||
type == DisplayItemType::TYPE_FILTER ||
type == DisplayItemType::TYPE_SVG_WRAPPER) {
// SVG items have some invalidation issues, see bugs 1494110 and 1494663.
return true;
}
if (type == DisplayItemType::TYPE_TRANSFORM) {
// Prerendering of transforms can change without frame invalidation.
return true;
}
return false;
}
RetainedDisplayList Finalize() {
for (size_t i = 0; i < mOldDAG.Length(); i++) {
if (mOldItems[i].IsUsed()) {
continue;
}
AutoTArray<MergedListIndex, 2> directPredecessors =
ResolveNodeIndexesOldToMerged(
mOldDAG.GetDirectPredecessors(OldListIndex(i)));
ProcessOldNode(OldListIndex(i), std::move(directPredecessors));
}
RetainedDisplayList result(mBuilder->Builder());
result.AppendToTop(&mMergedItems);
result.mDAG = std::move(mMergedDAG);
MOZ_RELEASE_ASSERT(result.mDAG.Length() == result.Length());
return result;
}
bool HasMatchingItemInOldList(nsDisplayItem* aItem, OldListIndex* aOutIndex) {
// Look for an item that matches aItem's frame and per-frame-key, but isn't
// the same item.
uint32_t outerKey = mOuterItem ? mOuterItem->GetPerFrameKey() : 0;
nsIFrame* frame = aItem->Frame();
for (nsDisplayItem* i : frame->DisplayItems()) {
if (i != aItem && i->Frame() == frame &&
i->GetPerFrameKey() == aItem->GetPerFrameKey()) {
if (i->GetOldListIndex(mOldList, outerKey, aOutIndex)) {
return true;
}
}
}
return false;
}
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
bool HasModifiedFrame(nsDisplayItem* aItem) {
nsIFrame* stopFrame = mOuterItem ? mOuterItem->Frame() : nullptr;
return AnyContentAncestorModified(aItem->FrameForInvalidation(), stopFrame);
}
#endif
void UpdateContainerASR(nsDisplayItem* aItem) {
mContainerASR = SelectContainerASR(
aItem->GetClipChain(), aItem->GetActiveScrolledRoot(), mContainerASR);
}
MergedListIndex AddNewNode(
nsDisplayItem* aItem, const Maybe<OldListIndex>& aOldIndex,
Span<const MergedListIndex> aDirectPredecessors,
const Maybe<MergedListIndex>& aExtraDirectPredecessor) {
UpdateContainerASR(aItem);
aItem->NotifyUsed(mBuilder->Builder());
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
for (nsDisplayItem* i : aItem->Frame()->DisplayItems()) {
if (i->Frame() == aItem->Frame() &&
i->GetPerFrameKey() == aItem->GetPerFrameKey()) {
MOZ_DIAGNOSTIC_ASSERT(!i->IsMergedItem());
}
}
aItem->SetMergedPreProcessed(true, false);
#endif
mMergedItems.AppendToTop(aItem);
mBuilder->Metrics()->mTotalItems++;
MergedListIndex newIndex =
mMergedDAG.AddNode(aDirectPredecessors, aExtraDirectPredecessor);
return newIndex;
}
void ProcessOldNode(OldListIndex aNode,
nsTArray<MergedListIndex>&& aDirectPredecessors) {
nsDisplayItem* item = mOldItems[aNode.val].mItem;
if (mOldItems[aNode.val].IsChanged()) {
mOldItems[aNode.val].Discard(mBuilder, std::move(aDirectPredecessors));
mResultIsModified = true;
} else {
MergeChildLists(nullptr, item, item);
if (item->GetType() == DisplayItemType::TYPE_SUBDOCUMENT) {
mBuilder->IncrementSubDocPresShellPaintCount(item);
}
item->SetReused(true);
mBuilder->Metrics()->mReusedItems++;
mOldItems[aNode.val].AddedToMergedList(
AddNewNode(item, Some(aNode), aDirectPredecessors, Nothing()));
}
}
struct PredecessorStackItem {
PredecessorStackItem(OldListIndex aNode, Span<OldListIndex> aPredecessors)
: mNode(aNode),
mDirectPredecessors(aPredecessors),
mCurrentPredecessorIndex(0) {}
bool IsFinished() {
return mCurrentPredecessorIndex == mDirectPredecessors.Length();
}
OldListIndex GetAndIncrementCurrentPredecessor() {
return mDirectPredecessors[mCurrentPredecessorIndex++];
}
OldListIndex mNode;
Span<OldListIndex> mDirectPredecessors;
size_t mCurrentPredecessorIndex;
};
AutoTArray<MergedListIndex, 2> ProcessPredecessorsOfOldNode(
OldListIndex aNode) {
AutoTArray<PredecessorStackItem, 256> mStack;
mStack.AppendElement(
PredecessorStackItem(aNode, mOldDAG.GetDirectPredecessors(aNode)));
while (true) {
if (mStack.LastElement().IsFinished()) {
// If we've finished processing all the entries in the current set, then
// pop it off the processing stack and process it.
PredecessorStackItem item = mStack.PopLastElement();
AutoTArray<MergedListIndex, 2> result =
ResolveNodeIndexesOldToMerged(item.mDirectPredecessors);
if (mStack.IsEmpty()) {
return result;
}
ProcessOldNode(item.mNode, std::move(result));
} else {
// Grab the current predecessor, push predecessors of that onto the
// processing stack (if it hasn't already been processed), and then
// advance to the next entry.
OldListIndex currentIndex =
mStack.LastElement().GetAndIncrementCurrentPredecessor();
if (!mOldItems[currentIndex.val].IsUsed()) {
mStack.AppendElement(PredecessorStackItem(
currentIndex, mOldDAG.GetDirectPredecessors(currentIndex)));
}
}
}
}
AutoTArray<MergedListIndex, 2> ResolveNodeIndexesOldToMerged(
Span<OldListIndex> aDirectPredecessors) {
AutoTArray<MergedListIndex, 2> result;
result.SetCapacity(aDirectPredecessors.Length());
for (OldListIndex index : aDirectPredecessors) {
OldItemInfo& oldItem = mOldItems[index.val];
if (oldItem.IsDiscarded()) {
for (MergedListIndex inner : oldItem.mDirectPredecessors) {
if (!result.Contains(inner)) {
result.AppendElement(inner);
}
}
} else {
result.AppendElement(oldItem.mIndex);
}
}
return result;
}
RetainedDisplayListBuilder* mBuilder;
RetainedDisplayList* mOldList;
Maybe<const ActiveScrolledRoot*> mContainerASR;
nsTArray<OldItemInfo> mOldItems;
DirectedAcyclicGraph<OldListUnits> mOldDAG;
// Unfortunately we can't use strong typing for the hashtables
// since they internally encode the type with the mOps pointer,
// and assert when we try swap the contents
nsDisplayList mMergedItems;
DirectedAcyclicGraph<MergedListUnits> mMergedDAG;
nsDisplayItem* mOuterItem;
bool mResultIsModified;
};
#ifdef DEBUG
void VerifyNotModified(nsDisplayList* aList) {
for (nsDisplayItem* item : *aList) {
MOZ_ASSERT(!AnyContentAncestorModified(item->FrameForInvalidation()));
if (item->GetChildren()) {
VerifyNotModified(item->GetChildren());
}
}
}
#endif
/**
* Takes two display lists and merges them into an output list.
*
* Display lists wthout an explicit DAG are interpreted as linear DAGs (with a
* maximum of one direct predecessor and one direct successor per node). We add
* the two DAGs together, and then output the topological sorted ordering as the
* final display list.
*
* Once we've merged a list, we then retain the DAG (as part of the
* RetainedDisplayList object) to use for future merges.
*/
bool RetainedDisplayListBuilder::MergeDisplayLists(
nsDisplayList* aNewList, RetainedDisplayList* aOldList,
RetainedDisplayList* aOutList,
mozilla::Maybe<const mozilla::ActiveScrolledRoot*>& aOutContainerASR,
nsDisplayItem* aOuterItem) {
AUTO_PROFILER_LABEL_CATEGORY_PAIR(GRAPHICS_DisplayListMerging);
if (!aOldList->IsEmpty()) {
// If we still have items in the actual list, then it is because
// PreProcessDisplayList decided that it was sure it can't be modified. We
// can just use it directly, and throw any new items away.
aNewList->DeleteAll(&mBuilder);
#ifdef DEBUG
VerifyNotModified(aOldList);
#endif
if (aOldList != aOutList) {
*aOutList = std::move(*aOldList);
}
return false;
}
MergeState merge(this, *aOldList, aOuterItem);
Maybe<MergedListIndex> previousItemIndex;
for (nsDisplayItem* item : aNewList->TakeItems()) {
Metrics()->mNewItems++;
previousItemIndex = merge.ProcessItemFromNewList(item, previousItemIndex);
}
*aOutList = merge.Finalize();
aOutContainerASR = merge.mContainerASR;
return merge.mResultIsModified;
}
void RetainedDisplayListBuilder::GetModifiedAndFramesWithProps(
nsTArray<nsIFrame*>* aOutModifiedFrames,
nsTArray<nsIFrame*>* aOutFramesWithProps) {
for (auto it = Data()->ConstIterator(); !it.Done(); it.Next()) {
nsIFrame* frame = it.Key();
const RetainedDisplayListData::FrameFlags& flags = it.Data();
if (flags.contains(RetainedDisplayListData::FrameFlag::Modified)) {
aOutModifiedFrames->AppendElement(frame);
}
if (flags.contains(RetainedDisplayListData::FrameFlag::HasProps)) {
aOutFramesWithProps->AppendElement(frame);
}
if (flags.contains(RetainedDisplayListData::FrameFlag::HadWillChange)) {
Builder()->RemoveFromWillChangeBudgets(frame);
}
}
Data()->Clear();
}
// ComputeRebuildRegion debugging
// #define CRR_DEBUG 1
#if CRR_DEBUG
# define CRR_LOG(...) printf_stderr(__VA_ARGS__)
#else
# define CRR_LOG(...)
#endif
static nsDisplayItem* GetFirstDisplayItemWithChildren(nsIFrame* aFrame) {
for (nsDisplayItem* i : aFrame->DisplayItems()) {
if (i->HasDeletedFrame() || i->Frame() != aFrame) {
// The main frame for the display item has been deleted or the display
// item belongs to another frame.
continue;
}
if (i->HasChildren()) {
return static_cast<nsDisplayItem*>(i);
}
}
return nullptr;
}
static bool IsInPreserve3DContext(const nsIFrame* aFrame) {
return aFrame->Extend3DContext() ||
aFrame->Combines3DTransformWithAncestors();
}
// Returns true if |aFrame| can store a display list building rect.
// These limitations are necessary to guarantee that
// 1) Just enough items are rebuilt to properly update display list
// 2) Modified frames will be visited during a partial display list build.
static bool CanStoreDisplayListBuildingRect(nsDisplayListBuilder* aBuilder,
nsIFrame* aFrame) {
return aFrame != aBuilder->RootReferenceFrame() &&
aFrame->IsStackingContext() && aFrame->IsFixedPosContainingBlock() &&
// Split frames might have placeholders for modified frames in their
// unmodified continuation frame.
!aFrame->GetPrevContinuation() && !aFrame->GetNextContinuation();
}
static bool ProcessFrameInternal(nsIFrame* aFrame,
nsDisplayListBuilder* aBuilder,
nsIFrame** aAGR, nsRect& aOverflow,
const nsIFrame* aStopAtFrame,
nsTArray<nsIFrame*>& aOutFramesWithProps,
const bool aStopAtStackingContext) {
nsIFrame* currentFrame = aFrame;
while (currentFrame != aStopAtFrame) {
CRR_LOG("currentFrame: %p (placeholder=%d), aOverflow: %d %d %d %d\n",
currentFrame, !aStopAtStackingContext, aOverflow.x, aOverflow.y,
aOverflow.width, aOverflow.height);
// If the current frame is an OOF frame, DisplayListBuildingData needs to be
// set on all the ancestor stacking contexts of the placeholder frame, up
// to the containing block of the OOF frame. This is done to ensure that the
// content that might be behind the OOF frame is built for merging.
nsIFrame* placeholder = currentFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)
? currentFrame->GetPlaceholderFrame()
: nullptr;
if (placeholder) {
nsRect placeholderOverflow = aOverflow;
auto rv = nsLayoutUtils::TransformRect(currentFrame, placeholder,
placeholderOverflow);
if (rv != nsLayoutUtils::TRANSFORM_SUCCEEDED) {
placeholderOverflow = nsRect();
}
CRR_LOG("Processing placeholder %p for OOF frame %p\n", placeholder,
currentFrame);
CRR_LOG("OOF frame draw area: %d %d %d %d\n", placeholderOverflow.x,
placeholderOverflow.y, placeholderOverflow.width,
placeholderOverflow.height);
// Tracking AGRs for the placeholder processing is not necessary, as the
// goal is to only modify the DisplayListBuildingData rect.
nsIFrame* dummyAGR = nullptr;
// Find a common ancestor frame to handle frame continuations.
// TODO: It might be possible to write a more specific and efficient
// function for this.
const nsIFrame* ancestor = nsLayoutUtils::FindNearestCommonAncestorFrame(
currentFrame->GetParent(), placeholder->GetParent());
if (!ProcessFrameInternal(placeholder, aBuilder, &dummyAGR,
placeholderOverflow, ancestor,
aOutFramesWithProps, false)) {
return false;
}
}
// Convert 'aOverflow' into the coordinate space of the nearest stacking
// context or display port ancestor and update 'currentFrame' to point to
// that frame.
aOverflow = nsLayoutUtils::TransformFrameRectToAncestor(
currentFrame, aOverflow, aStopAtFrame, nullptr, nullptr,
/* aStopAtStackingContextAndDisplayPortAndOOFFrame = */ true,
&currentFrame);
if (IsInPreserve3DContext(currentFrame)) {
return false;
}
MOZ_ASSERT(currentFrame);
// Check whether the current frame is a scrollable frame with display port.
nsRect displayPort;
nsIScrollableFrame* sf = do_QueryFrame(currentFrame);
nsIContent* content = sf ? currentFrame->GetContent() : nullptr;
if (content && DisplayPortUtils::GetDisplayPort(content, &displayPort)) {
CRR_LOG("Frame belongs to displayport frame %p\n", currentFrame);
// Get overflow relative to the scrollport (from the scrollframe)
nsRect r = aOverflow - sf->GetScrollPortRect().TopLeft();
r.IntersectRect(r, displayPort);
if (!r.IsEmpty()) {
nsRect* rect = currentFrame->GetProperty(
nsDisplayListBuilder::DisplayListBuildingDisplayPortRect());
if (!rect) {
rect = new nsRect();
currentFrame->SetProperty(
nsDisplayListBuilder::DisplayListBuildingDisplayPortRect(), rect);
currentFrame->SetHasOverrideDirtyRegion(true);
aOutFramesWithProps.AppendElement(currentFrame);
}
rect->UnionRect(*rect, r);
CRR_LOG("Adding area to displayport draw area: %d %d %d %d\n", r.x, r.y,
r.width, r.height);
// TODO: Can we just use MarkFrameForDisplayIfVisible, plus
// MarkFramesForDifferentAGR to ensure that this displayport, plus any
// items that move relative to it get rebuilt, and then not contribute
// to the root dirty area?
aOverflow = sf->GetScrollPortRect();
} else {
// Don't contribute to the root dirty area at all.
aOverflow.SetEmpty();
}
} else {
aOverflow.IntersectRect(aOverflow,
currentFrame->InkOverflowRectRelativeToSelf());
}
if (aOverflow.IsEmpty()) {
break;
}
if (CanStoreDisplayListBuildingRect(aBuilder, currentFrame)) {
CRR_LOG("Frame belongs to stacking context frame %p\n", currentFrame);
// If we found an intermediate stacking context with an existing display
// item then we can store the dirty rect there and stop. If we couldn't
// find one then we need to keep bubbling up to the next stacking context.
nsDisplayItem* wrapperItem =
GetFirstDisplayItemWithChildren(currentFrame);
if (!wrapperItem) {
continue;
}
// Store the stacking context relative dirty area such
// that display list building will pick it up when it
// gets to it.
nsDisplayListBuilder::DisplayListBuildingData* data =
currentFrame->GetProperty(
nsDisplayListBuilder::DisplayListBuildingRect());
if (!data) {
data = new nsDisplayListBuilder::DisplayListBuildingData();
currentFrame->SetProperty(
nsDisplayListBuilder::DisplayListBuildingRect(), data);
currentFrame->SetHasOverrideDirtyRegion(true);
aOutFramesWithProps.AppendElement(currentFrame);
}
CRR_LOG("Adding area to stacking context draw area: %d %d %d %d\n",
aOverflow.x, aOverflow.y, aOverflow.width, aOverflow.height);
data->mDirtyRect.UnionRect(data->mDirtyRect, aOverflow);
if (!aStopAtStackingContext) {
// Continue ascending the frame tree until we reach aStopAtFrame.
continue;
}
// Grab the visible (display list building) rect for children of this
// wrapper item and convert into into coordinate relative to the current
// frame.
nsRect previousVisible = wrapperItem->GetBuildingRectForChildren();
if (wrapperItem->ReferenceFrameForChildren() != wrapperItem->Frame()) {
previousVisible -= wrapperItem->ToReferenceFrame();
}
if (!previousVisible.Contains(aOverflow)) {
// If the overflow area of the changed frame isn't contained within the
// old item, then we might change the size of the item and need to
// update its sorting accordingly. Keep propagating the overflow area up
// so that we build intersecting items for sorting.
continue;
}
if (!data->mModifiedAGR) {
data->mModifiedAGR = *aAGR;
} else if (data->mModifiedAGR != *aAGR) {
data->mDirtyRect = currentFrame->InkOverflowRectRelativeToSelf();
CRR_LOG(
"Found multiple modified AGRs within this stacking context, "
"giving up\n");
}
// Don't contribute to the root dirty area at all.
aOverflow.SetEmpty();
*aAGR = nullptr;
break;
}
}
return true;
}
bool RetainedDisplayListBuilder::ProcessFrame(
nsIFrame* aFrame, nsDisplayListBuilder* aBuilder, nsIFrame* aStopAtFrame,
nsTArray<nsIFrame*>& aOutFramesWithProps, const bool aStopAtStackingContext,
nsRect* aOutDirty, nsIFrame** aOutModifiedAGR) {
if (aFrame->HasOverrideDirtyRegion()) {
aOutFramesWithProps.AppendElement(aFrame);
}
if (aFrame->HasAnyStateBits(NS_FRAME_IN_POPUP)) {
return true;
}
// TODO: There is almost certainly a faster way of doing this, probably can be
// combined with the ancestor walk for TransformFrameRectToAncestor.
nsIFrame* agrFrame = aBuilder->FindAnimatedGeometryRootFrameFor(aFrame);
CRR_LOG("Processing frame %p with agr %p\n", aFrame, agr->mFrame);
// Convert the frame's overflow rect into the coordinate space
// of the nearest stacking context that has an existing display item.
// We store that as a dirty rect on that stacking context so that we build
// all items that intersect the changed frame within the stacking context,
// and then we use MarkFrameForDisplayIfVisible to make sure the stacking
// context itself gets built. We don't need to build items that intersect
// outside of the stacking context, since we know the stacking context item
// exists in the old list, so we can trivially merge without needing other
// items.
nsRect overflow = aFrame->InkOverflowRectRelativeToSelf();
// If the modified frame is also a caret frame, include the caret area.
// This is needed because some frames (for example text frames without text)
// might have an empty overflow rect.
if (aFrame == aBuilder->GetCaretFrame()) {
overflow.UnionRect(overflow, aBuilder->GetCaretRect());
}
if (!ProcessFrameInternal(aFrame, aBuilder, &agrFrame, overflow, aStopAtFrame,
aOutFramesWithProps, aStopAtStackingContext)) {
return false;
}
if (!overflow.IsEmpty()) {
aOutDirty->UnionRect(*aOutDirty, overflow);
CRR_LOG("Adding area to root draw area: %d %d %d %d\n", overflow.x,
overflow.y, overflow.width, overflow.height);
// If we get changed frames from multiple AGRS, then just give up as it gets
// really complex to track which items would need to be marked in
// MarkFramesForDifferentAGR.
if (!*aOutModifiedAGR) {
CRR_LOG("Setting %p as root stacking context AGR\n", agrFrame);
*aOutModifiedAGR = agrFrame;
} else if (agrFrame && *aOutModifiedAGR != agrFrame) {
CRR_LOG("Found multiple AGRs in root stacking context, giving up\n");
return false;
}
}
return true;
}
static void AddFramesForContainingBlock(nsIFrame* aBlock,
const nsFrameList& aFrames,
nsTArray<nsIFrame*>& aExtraFrames) {
for (nsIFrame* f : aFrames) {
if (!f->IsFrameModified() && AnyContentAncestorModified(f, aBlock)) {
CRR_LOG("Adding invalid OOF %p\n", f);
aExtraFrames.AppendElement(f);
}
}
}
// Placeholder descendants of aFrame don't contribute to aFrame's overflow area.
// Find all the containing blocks that might own placeholders under us, walk
// their OOF frames list, and manually invalidate any frames that are
// descendants of a modified frame (us, or another frame we'll get to soon).
// This is combined with the work required for MarkFrameForDisplayIfVisible,
// so that we can avoid an extra ancestor walk, and we can reuse the flag
// to detect when we've already visited an ancestor (and thus all further
// ancestors must also be visited).
static void FindContainingBlocks(nsIFrame* aFrame,
nsTArray<nsIFrame*>& aExtraFrames) {
for (nsIFrame* f = aFrame; f; f = nsLayoutUtils::GetDisplayListParent(f)) {
if (f->ForceDescendIntoIfVisible()) {
return;
}
f->SetForceDescendIntoIfVisible(true);
CRR_LOG("Considering OOFs for %p\n", f);
AddFramesForContainingBlock(f, f->GetChildList(FrameChildListID::Float),
aExtraFrames);
AddFramesForContainingBlock(f, f->GetChildList(f->GetAbsoluteListID()),
aExtraFrames);
// This condition must match the condition in
// nsLayoutUtils::GetParentOrPlaceholderFor which is used by
// nsLayoutUtils::GetDisplayListParent
if (f->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) && !f->GetPrevInFlow()) {
nsIFrame* parent = f->GetParent();
if (parent && !parent->ForceDescendIntoIfVisible()) {
// If the GetDisplayListParent call is going to walk to a placeholder,
// in rare cases the placeholder might be contained in a different
// continuation from the oof. So we have to make sure to mark the oofs
// parent. In the common case this doesn't make us do any extra work,
// just changes the order in which we visit the frames since walking
// through placeholders will walk through the parent, and we stop when
// we find a ForceDescendIntoIfVisible bit set.
FindContainingBlocks(parent, aExtraFrames);
}
}
}
}
/**
* Given a list of frames that has been modified, computes the region that we
* need to do display list building for in order to build all modified display
* items.
*
* When a modified frame is within a stacking context (with an existing display
* item), then we only contribute to the build area within the stacking context,
* as well as forcing display list building to descend to the stacking context.
* We don't need to add build area outside of the stacking context (and force
* items above/below the stacking context container item to be built), since
* just matching the position of the stacking context container item is
* sufficient to ensure correct ordering during merging.
*
* We need to rebuild all items that might intersect with the modified frame,
* both now and during async changes on the compositor. We do this by rebuilding
* the area covered by the changed frame, as well as rebuilding all items that
* have a different (async) AGR to the changed frame. If we have changes to
* multiple AGRs (within a stacking context), then we rebuild that stacking
* context entirely.
*
* @param aModifiedFrames The list of modified frames.
* @param aOutDirty The result region to use for display list building.
* @param aOutModifiedAGR The modified AGR for the root stacking context.
* @param aOutFramesWithProps The list of frames to which we attached partial
* build data so that it can be cleaned up.
*
* @return true if we succesfully computed a partial rebuild region, false if a
* full build is required.
*/
bool RetainedDisplayListBuilder::ComputeRebuildRegion(
nsTArray<nsIFrame*>& aModifiedFrames, nsRect* aOutDirty,
nsIFrame** aOutModifiedAGR, nsTArray<nsIFrame*>& aOutFramesWithProps) {
CRR_LOG("Computing rebuild regions for %zu frames:\n",
aModifiedFrames.Length());
nsTArray<nsIFrame*> extraFrames;
for (nsIFrame* f : aModifiedFrames) {
MOZ_ASSERT(f);
mBuilder.AddFrameMarkedForDisplayIfVisible(f);
FindContainingBlocks(f, extraFrames);
if (!ProcessFrame(f, &mBuilder, RootReferenceFrame(), aOutFramesWithProps,
true, aOutDirty, aOutModifiedAGR)) {
return false;
}
}
// Since we set modified to true on the extraFrames, add them to
// aModifiedFrames so that it will get reverted.
aModifiedFrames.AppendElements(extraFrames);
for (nsIFrame* f : extraFrames) {
f->SetFrameIsModified(true);
if (!ProcessFrame(f, &mBuilder, RootReferenceFrame(), aOutFramesWithProps,
true, aOutDirty, aOutModifiedAGR)) {
return false;
}
}
return true;
}
bool RetainedDisplayListBuilder::ShouldBuildPartial(
nsTArray<nsIFrame*>& aModifiedFrames) {
if (mList.IsEmpty()) {
// Partial builds without a previous display list do not make sense.
Metrics()->mPartialUpdateFailReason = PartialUpdateFailReason::EmptyList;
return false;
}
if (aModifiedFrames.Length() >
StaticPrefs::layout_display_list_rebuild_frame_limit()) {
// Computing a dirty rect with too many modified frames can be slow.
Metrics()->mPartialUpdateFailReason = PartialUpdateFailReason::RebuildLimit;
return false;
}
// We don't support retaining with overlay scrollbars, since they require
// us to look at the display list and pick the highest z-index, which
// we can't do during partial building.
if (mBuilder.DisablePartialUpdates()) {
mBuilder.SetDisablePartialUpdates(false);
Metrics()->mPartialUpdateFailReason = PartialUpdateFailReason::Disabled;
return false;
}
for (nsIFrame* f : aModifiedFrames) {
MOZ_ASSERT(f);
const LayoutFrameType type = f->Type();
// If we have any modified frames of the following types, it is likely that
// doing a partial rebuild of the display list will be slower than doing a
// full rebuild.
// This is because these frames either intersect or may intersect with most
// of the page content. This is either due to display port size or different
// async AGR.
if (type == LayoutFrameType::Viewport ||
type == LayoutFrameType::PageContent ||
type == LayoutFrameType::Canvas || type == LayoutFrameType::Scrollbar) {
Metrics()->mPartialUpdateFailReason = PartialUpdateFailReason::FrameType;
return false;
}
// Detect root scroll frame and do a full rebuild for them too for the same
// reasons as above, but also because top layer items should to be marked
// modified if the root scroll frame is modified. Putting this check here
// means we don't need to check everytime a frame is marked modified though.
if (type == LayoutFrameType::Scroll && f->GetParent() &&
!f->GetParent()->GetParent()) {
Metrics()->mPartialUpdateFailReason = PartialUpdateFailReason::FrameType;
return false;
}
}
return true;
}
void RetainedDisplayListBuilder::InvalidateCaretFramesIfNeeded() {
if (mPreviousCaret == mBuilder.GetCaretFrame()) {
// The current caret frame is the same as the previous one.
return;
}
if (mPreviousCaret) {
mPreviousCaret->MarkNeedsDisplayItemRebuild();
}
if (mBuilder.GetCaretFrame()) {
mBuilder.GetCaretFrame()->MarkNeedsDisplayItemRebuild();
}
mPreviousCaret = mBuilder.GetCaretFrame();
}
class AutoClearFramePropsArray {
public:
explicit AutoClearFramePropsArray(size_t aCapacity) : mFrames(aCapacity) {}
AutoClearFramePropsArray() = default;
~AutoClearFramePropsArray() {
size_t len = mFrames.Length();
nsIFrame** elements = mFrames.Elements();
for (size_t i = 0; i < len; ++i) {
nsIFrame* f = elements[i];
DL_LOGV("RDL - Clearing modified flags for frame %p", f);
if (f->HasOverrideDirtyRegion()) {
f->SetHasOverrideDirtyRegion(false);
f->RemoveProperty(nsDisplayListBuilder::DisplayListBuildingRect());
f->RemoveProperty(
nsDisplayListBuilder::DisplayListBuildingDisplayPortRect());
}
f->SetFrameIsModified(false);
f->SetHasModifiedDescendants(false);
}
}
nsTArray<nsIFrame*>& Frames() { return mFrames; }
bool IsEmpty() const { return mFrames.IsEmpty(); }
private:
nsTArray<nsIFrame*> mFrames;
};
void RetainedDisplayListBuilder::ClearFramesWithProps() {
AutoClearFramePropsArray modifiedFrames;
AutoClearFramePropsArray framesWithProps;
GetModifiedAndFramesWithProps(&modifiedFrames.Frames(),
&framesWithProps.Frames());
}
void RetainedDisplayListBuilder::ClearRetainedData() {
DL_LOGI("(%p) RDL - Clearing retained display list builder data", this);
List()->DeleteAll(Builder());
ClearFramesWithProps();
ClearReuseableDisplayItems();
}
namespace RDLUtils {
MOZ_NEVER_INLINE_DEBUG void AssertFrameSubtreeUnmodified(
const nsIFrame* aFrame) {
MOZ_ASSERT(!aFrame->IsFrameModified());
MOZ_ASSERT(!aFrame->HasModifiedDescendants());
for (const auto& childList : aFrame->ChildLists()) {
for (nsIFrame* child : childList.mList) {
AssertFrameSubtreeUnmodified(child);
}
}
}
MOZ_NEVER_INLINE_DEBUG void AssertDisplayListUnmodified(nsDisplayList* aList) {
for (nsDisplayItem* item : *aList) {
AssertDisplayItemUnmodified(item);
}
}
MOZ_NEVER_INLINE_DEBUG void AssertDisplayItemUnmodified(nsDisplayItem* aItem) {
MOZ_ASSERT(!aItem->HasDeletedFrame());
MOZ_ASSERT(!AnyContentAncestorModified(aItem->FrameForInvalidation()));
if (aItem->GetChildren()) {
AssertDisplayListUnmodified(aItem->GetChildren());
}
}
} // namespace RDLUtils
namespace RDL {
void MarkAncestorFrames(nsIFrame* aFrame,
nsTArray<nsIFrame*>& aOutFramesWithProps) {
nsIFrame* frame = nsLayoutUtils::GetDisplayListParent(aFrame);
while (frame && !frame->HasModifiedDescendants()) {
aOutFramesWithProps.AppendElement(frame);
frame->SetHasModifiedDescendants(true);
frame = nsLayoutUtils::GetDisplayListParent(frame);
}
}
/**
* Iterates over the modified frames array and updates the frame tree flags
* so that container frames know whether they have modified descendant frames.
* Frames that were marked modified are added to |aOutFramesWithProps|, so that
* the modified status can be cleared after the display list build.
*/
void MarkAllAncestorFrames(const nsTArray<nsIFrame*>& aModifiedFrames,
nsTArray<nsIFrame*>& aOutFramesWithProps) {
nsAutoString frameName;
DL_LOGI("RDL - Modified frames: %zu", aModifiedFrames.Length());
for (nsIFrame* frame : aModifiedFrames) {
#ifdef DEBUG
frame->GetFrameName(frameName);
#endif
DL_LOGV("RDL - Processing modified frame: %p (%s)", frame,
NS_ConvertUTF16toUTF8(frameName).get());
MarkAncestorFrames(frame, aOutFramesWithProps);
}
}
/**
* Marks the given display item |aItem| as reuseable container, and updates the
* bounds in case some child items were destroyed.
*/
MOZ_NEVER_INLINE_DEBUG void ReuseStackingContextItem(