Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "SMILAnimationFunction.h"
#include <math.h>
#include <algorithm>
#include <utility>
#include "mozilla/DebugOnly.h"
#include "mozilla/SMILAttr.h"
#include "mozilla/SMILCSSValueType.h"
#include "mozilla/SMILNullType.h"
#include "mozilla/SMILParserUtils.h"
#include "mozilla/SMILTimedElement.h"
#include "mozilla/dom/SVGAnimationElement.h"
#include "nsAttrValueInlines.h"
#include "nsCOMArray.h"
#include "nsCOMPtr.h"
#include "nsContentUtils.h"
#include "nsGkAtoms.h"
#include "nsIContent.h"
#include "nsReadableUtils.h"
#include "nsString.h"
using namespace mozilla::dom;
namespace mozilla {
//----------------------------------------------------------------------
// Static members
nsAttrValue::EnumTable SMILAnimationFunction::sAccumulateTable[] = {
{"none", false}, {"sum", true}, {nullptr, 0}};
nsAttrValue::EnumTable SMILAnimationFunction::sAdditiveTable[] = {
{"replace", false}, {"sum", true}, {nullptr, 0}};
nsAttrValue::EnumTable SMILAnimationFunction::sCalcModeTable[] = {
{"linear", CALC_LINEAR},
{"discrete", CALC_DISCRETE},
{"paced", CALC_PACED},
{"spline", CALC_SPLINE},
{nullptr, 0}};
// Any negative number should be fine as a sentinel here,
// because valid distances are non-negative.
#define COMPUTE_DISTANCE_ERROR (-1)
//----------------------------------------------------------------------
// Constructors etc.
SMILAnimationFunction::SMILAnimationFunction()
: mSampleTime(-1),
mRepeatIteration(0),
mBeginTime(INT64_MIN),
mAnimationElement(nullptr),
mErrorFlags(0),
mIsActive(false),
mIsFrozen(false),
mLastValue(false),
mHasChanged(true),
mValueNeedsReparsingEverySample(false),
mPrevSampleWasSingleValueAnimation(false),
mWasSkippedInPrevSample(false) {}
void SMILAnimationFunction::SetAnimationElement(
SVGAnimationElement* aAnimationElement) {
mAnimationElement = aAnimationElement;
}
bool SMILAnimationFunction::SetAttr(nsAtom* aAttribute, const nsAString& aValue,
nsAttrValue& aResult,
nsresult* aParseResult) {
// Some elements such as set and discard don't support all possible attributes
if (IsDisallowedAttribute(aAttribute)) {
aResult.SetTo(aValue);
if (aParseResult) {
*aParseResult = NS_OK;
}
return true;
}
bool foundMatch = true;
nsresult parseResult = NS_OK;
// The attributes 'by', 'from', 'to', and 'values' may be parsed differently
// depending on the element & attribute we're animating. So instead of
// parsing them now we re-parse them at every sample.
if (aAttribute == nsGkAtoms::by || aAttribute == nsGkAtoms::from ||
aAttribute == nsGkAtoms::to || aAttribute == nsGkAtoms::values) {
// We parse to, from, by, values at sample time.
// XXX Need to flag which attribute has changed and then when we parse it at
// sample time, report any errors and reset the flag
mHasChanged = true;
aResult.SetTo(aValue);
} else if (aAttribute == nsGkAtoms::accumulate) {
parseResult = SetAccumulate(aValue, aResult);
} else if (aAttribute == nsGkAtoms::additive) {
parseResult = SetAdditive(aValue, aResult);
} else if (aAttribute == nsGkAtoms::calcMode) {
parseResult = SetCalcMode(aValue, aResult);
} else if (aAttribute == nsGkAtoms::keyTimes) {
parseResult = SetKeyTimes(aValue, aResult);
} else if (aAttribute == nsGkAtoms::keySplines) {
parseResult = SetKeySplines(aValue, aResult);
} else {
foundMatch = false;
}
if (foundMatch && aParseResult) {
*aParseResult = parseResult;
}
return foundMatch;
}
bool SMILAnimationFunction::UnsetAttr(nsAtom* aAttribute) {
if (IsDisallowedAttribute(aAttribute)) {
return true;
}
bool foundMatch = true;
if (aAttribute == nsGkAtoms::by || aAttribute == nsGkAtoms::from ||
aAttribute == nsGkAtoms::to || aAttribute == nsGkAtoms::values) {
mHasChanged = true;
} else if (aAttribute == nsGkAtoms::accumulate) {
UnsetAccumulate();
} else if (aAttribute == nsGkAtoms::additive) {
UnsetAdditive();
} else if (aAttribute == nsGkAtoms::calcMode) {
UnsetCalcMode();
} else if (aAttribute == nsGkAtoms::keyTimes) {
UnsetKeyTimes();
} else if (aAttribute == nsGkAtoms::keySplines) {
UnsetKeySplines();
} else {
foundMatch = false;
}
return foundMatch;
}
void SMILAnimationFunction::SampleAt(SMILTime aSampleTime,
const SMILTimeValue& aSimpleDuration,
uint32_t aRepeatIteration) {
// * Update mHasChanged ("Might this sample be different from prev one?")
// Were we previously sampling a fill="freeze" final val? (We're not anymore.)
mHasChanged |= mLastValue;
// Are we sampling at a new point in simple duration? And does that matter?
mHasChanged |=
(mSampleTime != aSampleTime || mSimpleDuration != aSimpleDuration) &&
!IsValueFixedForSimpleDuration();
// Are we on a new repeat and accumulating across repeats?
if (!mErrorFlags) { // (can't call GetAccumulate() if we've had parse errors)
mHasChanged |= (mRepeatIteration != aRepeatIteration) && GetAccumulate();
}
mSampleTime = aSampleTime;
mSimpleDuration = aSimpleDuration;
mRepeatIteration = aRepeatIteration;
mLastValue = false;
}
void SMILAnimationFunction::SampleLastValue(uint32_t aRepeatIteration) {
if (!mLastValue || mRepeatIteration != aRepeatIteration) {
mHasChanged = true;
}
mRepeatIteration = aRepeatIteration;
mLastValue = true;
}
void SMILAnimationFunction::Activate(SMILTime aBeginTime) {
mBeginTime = aBeginTime;
mIsActive = true;
mIsFrozen = false;
mHasChanged = true;
}
void SMILAnimationFunction::Inactivate(bool aIsFrozen) {
mIsActive = false;
mIsFrozen = aIsFrozen;
mHasChanged = true;
}
void SMILAnimationFunction::ComposeResult(const SMILAttr& aSMILAttr,
SMILValue& aResult) {
mHasChanged = false;
mPrevSampleWasSingleValueAnimation = false;
mWasSkippedInPrevSample = false;
// Skip animations that are inactive or in error
if (!IsActiveOrFrozen() || mErrorFlags != 0) return;
// Get the animation values
SMILValueArray values;
nsresult rv = GetValues(aSMILAttr, values);
if (NS_FAILED(rv)) return;
// Check that we have the right number of keySplines and keyTimes
CheckValueListDependentAttrs(values.Length());
if (mErrorFlags != 0) return;
// If this interval is active, we must have a non-negative mSampleTime
MOZ_ASSERT(mSampleTime >= 0 || !mIsActive,
"Negative sample time for active animation");
MOZ_ASSERT(mSimpleDuration.IsResolved() || mLastValue,
"Unresolved simple duration for active or frozen animation");
// If we want to add but don't have a base value then just fail outright.
// This can happen when we skipped getting the base value because there's an
// animation function in the sandwich that should replace it but that function
// failed unexpectedly.
bool isAdditive = IsAdditive();
if (isAdditive && aResult.IsNull()) return;
SMILValue result;
if (values.Length() == 1 && !IsToAnimation()) {
// Single-valued animation
result = values[0];
mPrevSampleWasSingleValueAnimation = true;
} else if (mLastValue) {
// Sampling last value
const SMILValue& last = values.LastElement();
result = last;
// See comment in AccumulateResult: to-animation does not accumulate
if (!IsToAnimation() && GetAccumulate() && mRepeatIteration) {
// If the target attribute type doesn't support addition Add will
// fail leaving result = last
result.Add(last, mRepeatIteration);
}
} else {
// Interpolation
if (NS_FAILED(InterpolateResult(values, result, aResult))) return;
if (NS_FAILED(AccumulateResult(values, result))) return;
}
// If additive animation isn't required or isn't supported, set the value.
if (!isAdditive || NS_FAILED(aResult.SandwichAdd(result))) {
aResult = std::move(result);
}
}
int8_t SMILAnimationFunction::CompareTo(
const SMILAnimationFunction* aOther) const {
NS_ENSURE_TRUE(aOther, 0);
NS_ASSERTION(aOther != this, "Trying to compare to self");
// Inactive animations sort first
if (!IsActiveOrFrozen() && aOther->IsActiveOrFrozen()) return -1;
if (IsActiveOrFrozen() && !aOther->IsActiveOrFrozen()) return 1;
// Sort based on begin time
if (mBeginTime != aOther->GetBeginTime())
return mBeginTime > aOther->GetBeginTime() ? 1 : -1;
// Next sort based on syncbase dependencies: the dependent element sorts after
// its syncbase
const SMILTimedElement& thisTimedElement = mAnimationElement->TimedElement();
const SMILTimedElement& otherTimedElement =
aOther->mAnimationElement->TimedElement();
if (thisTimedElement.IsTimeDependent(otherTimedElement)) return 1;
if (otherTimedElement.IsTimeDependent(thisTimedElement)) return -1;
// Animations that appear later in the document sort after those earlier in
// the document
MOZ_ASSERT(mAnimationElement != aOther->mAnimationElement,
"Two animations cannot have the same animation content element!");
return (nsContentUtils::PositionIsBefore(mAnimationElement,
aOther->mAnimationElement))
? -1
: 1;
}
bool SMILAnimationFunction::WillReplace() const {
/*
* In IsAdditive() we don't consider to-animation to be additive as it is
* a special case that is dealt with differently in the compositing method.
* Here, however, we return FALSE for to-animation (i.e. it will NOT replace
* the underlying value) as it builds on the underlying value.
*/
return !mErrorFlags && !(IsAdditive() || IsToAnimation());
}
bool SMILAnimationFunction::HasChanged() const {
return mHasChanged || mValueNeedsReparsingEverySample;
}
bool SMILAnimationFunction::UpdateCachedTarget(
const SMILTargetIdentifier& aNewTarget) {
if (!mLastTarget.Equals(aNewTarget)) {
mLastTarget = aNewTarget;
return true;
}
return false;
}
//----------------------------------------------------------------------
// Implementation helpers
nsresult SMILAnimationFunction::InterpolateResult(const SMILValueArray& aValues,
SMILValue& aResult,
SMILValue& aBaseValue) {
// Sanity check animation values
if ((!IsToAnimation() && aValues.Length() < 2) ||
(IsToAnimation() && aValues.Length() != 1)) {
NS_ERROR("Unexpected number of values");
return NS_ERROR_FAILURE;
}
if (IsToAnimation() && aBaseValue.IsNull()) {
return NS_ERROR_FAILURE;
}
// Get the normalised progress through the simple duration.
//
// If we have an indefinite simple duration, just set the progress to be
// 0 which will give us the expected behaviour of the animation being fixed at
// its starting point.
double simpleProgress = 0.0;
if (mSimpleDuration.IsDefinite()) {
SMILTime dur = mSimpleDuration.GetMillis();
MOZ_ASSERT(dur >= 0, "Simple duration should not be negative");
MOZ_ASSERT(mSampleTime >= 0, "Sample time should not be negative");
if (mSampleTime >= dur || mSampleTime < 0) {
NS_ERROR("Animation sampled outside interval");
return NS_ERROR_FAILURE;
}
if (dur > 0) {
simpleProgress = (double)mSampleTime / dur;
} // else leave simpleProgress at 0.0 (e.g. if mSampleTime == dur == 0)
}
nsresult rv = NS_OK;
SMILCalcMode calcMode = GetCalcMode();
// Force discrete calcMode for visibility since StyleAnimationValue will
// try to interpolate it using the special clamping behavior defined for
// CSS.
if (SMILCSSValueType::PropertyFromValue(aValues[0]) ==
eCSSProperty_visibility) {
calcMode = CALC_DISCRETE;
}
if (calcMode != CALC_DISCRETE) {
// Get the normalised progress between adjacent values
const SMILValue* from = nullptr;
const SMILValue* to = nullptr;
// Init to -1 to make sure that if we ever forget to set this, the
// MOZ_ASSERT that tests that intervalProgress is in range will fail.
double intervalProgress = -1.f;
if (IsToAnimation()) {
from = &aBaseValue;
to = &aValues[0];
if (calcMode == CALC_PACED) {
// Note: key[Times/Splines/Points] are ignored for calcMode="paced"
intervalProgress = simpleProgress;
} else {
double scaledSimpleProgress =
ScaleSimpleProgress(simpleProgress, calcMode);
intervalProgress = ScaleIntervalProgress(scaledSimpleProgress, 0);
}
} else if (calcMode == CALC_PACED) {
rv = ComputePacedPosition(aValues, simpleProgress, intervalProgress, from,
to);
// Note: If the above call fails, we'll skip the "from->Interpolate"
// call below, and we'll drop into the CALC_DISCRETE section
// instead. (as the spec says we should, because our failure was
// presumably due to the values being non-additive)
} else { // calcMode == CALC_LINEAR or calcMode == CALC_SPLINE
double scaledSimpleProgress =
ScaleSimpleProgress(simpleProgress, calcMode);
uint32_t index =
(uint32_t)floor(scaledSimpleProgress * (aValues.Length() - 1));
from = &aValues[index];
to = &aValues[index + 1];
intervalProgress = scaledSimpleProgress * (aValues.Length() - 1) - index;
intervalProgress = ScaleIntervalProgress(intervalProgress, index);
}
if (NS_SUCCEEDED(rv)) {
MOZ_ASSERT(from, "NULL from-value during interpolation");
MOZ_ASSERT(to, "NULL to-value during interpolation");
MOZ_ASSERT(0.0f <= intervalProgress && intervalProgress < 1.0f,
"Interval progress should be in the range [0, 1)");
rv = from->Interpolate(*to, intervalProgress, aResult);
}
}
// Discrete-CalcMode case
// Note: If interpolation failed (isn't supported for this type), the SVG
// spec says to force discrete mode.
if (calcMode == CALC_DISCRETE || NS_FAILED(rv)) {
double scaledSimpleProgress =
ScaleSimpleProgress(simpleProgress, CALC_DISCRETE);
// Floating-point errors can mean that, for example, a sample time of 29s in
// a 100s duration animation gives us a simple progress of 0.28999999999
// instead of the 0.29 we'd expect. Normally this isn't a noticeable
// problem, but when we have sudden jumps in animation values (such as is
// the case here with discrete animation) we can get unexpected results.
//
// To counteract this, before we perform a floor() on the animation
// progress, we add a tiny fudge factor to push us into the correct interval
// in cases where floating-point errors might cause us to fall short.
static const double kFloatingPointFudgeFactor = 1.0e-16;
if (scaledSimpleProgress + kFloatingPointFudgeFactor <= 1.0) {
scaledSimpleProgress += kFloatingPointFudgeFactor;
}
if (IsToAnimation()) {
// We don't follow SMIL 3, 12.6.4, where discrete to animations
// are the same as <set> animations. Instead, we treat it as a
// discrete animation with two values (the underlying value and
// the to="" value), and honor keyTimes="" as well.
uint32_t index = (uint32_t)floor(scaledSimpleProgress * 2);
aResult = index == 0 ? aBaseValue : aValues[0];
} else {
uint32_t index = (uint32_t)floor(scaledSimpleProgress * aValues.Length());
aResult = aValues[index];
// For animation of CSS properties, normally when interpolating we perform
// a zero-value fixup which means that empty values (values with type
// SMILCSSValueType but a null pointer value) are converted into
// a suitable zero value based on whatever they're being interpolated
// with. For discrete animation, however, since we don't interpolate,
// that never happens. In some rare cases, such as discrete non-additive
// by-animation, we can arrive here with |aResult| being such an empty
// value so we need to manually perform the fixup.
//
// We could define a generic method for this on SMILValue but its faster
// and simpler to just special case SMILCSSValueType.
if (aResult.mType == &SMILCSSValueType::sSingleton) {
// We have currently only ever encountered this case for the first
// value of a by-animation (which has two values) and since we have no
// way of testing other cases we just skip them (but assert if we
// ever do encounter them so that we can add code to handle them).
if (index + 1 >= aValues.Length()) {
MOZ_ASSERT(aResult.mU.mPtr, "The last value should not be empty");
} else {
// Base the type of the zero value on the next element in the series.
SMILCSSValueType::FinalizeValue(aResult, aValues[index + 1]);
}
}
}
rv = NS_OK;
}
return rv;
}
nsresult SMILAnimationFunction::AccumulateResult(const SMILValueArray& aValues,
SMILValue& aResult) {
if (!IsToAnimation() && GetAccumulate() && mRepeatIteration) {
// If the target attribute type doesn't support addition, Add will
// fail and we leave aResult untouched.
aResult.Add(aValues.LastElement(), mRepeatIteration);
}
return NS_OK;
}
/*
* Given the simple progress for a paced animation, this method:
* - determines which two elements of the values array we're in between
* (returned as aFrom and aTo)
* - determines where we are between them
* (returned as aIntervalProgress)
*
* Returns NS_OK, or NS_ERROR_FAILURE if our values don't support distance
* computation.
*/
nsresult SMILAnimationFunction::ComputePacedPosition(
const SMILValueArray& aValues, double aSimpleProgress,
double& aIntervalProgress, const SMILValue*& aFrom, const SMILValue*& aTo) {
NS_ASSERTION(0.0f <= aSimpleProgress && aSimpleProgress < 1.0f,
"aSimpleProgress is out of bounds");
NS_ASSERTION(GetCalcMode() == CALC_PACED,
"Calling paced-specific function, but not in paced mode");
MOZ_ASSERT(aValues.Length() >= 2, "Unexpected number of values");
// Trivial case: If we have just 2 values, then there's only one interval
// for us to traverse, and our progress across that interval is the exact
// same as our overall progress.
if (aValues.Length() == 2) {
aIntervalProgress = aSimpleProgress;
aFrom = &aValues[0];
aTo = &aValues[1];
return NS_OK;
}
double totalDistance = ComputePacedTotalDistance(aValues);
if (totalDistance == COMPUTE_DISTANCE_ERROR) return NS_ERROR_FAILURE;
// If we have 0 total distance, then it's unclear where our "paced" position
// should be. We can just fail, which drops us into discrete animation mode.
// (That's fine, since our values are apparently indistinguishable anyway.)
if (totalDistance == 0.0) {
return NS_ERROR_FAILURE;
}
// total distance we should have moved at this point in time.
// (called 'remainingDist' due to how it's used in loop below)
double remainingDist = aSimpleProgress * totalDistance;
// Must be satisfied, because totalDistance is a sum of (non-negative)
// distances, and aSimpleProgress is non-negative
NS_ASSERTION(remainingDist >= 0, "distance values must be non-negative");
// Find where remainingDist puts us in the list of values
// Note: We could optimize this next loop by caching the
// interval-distances in an array, but maybe that's excessive.
for (uint32_t i = 0; i < aValues.Length() - 1; i++) {
// Note: The following assertion is valid because remainingDist should
// start out non-negative, and this loop never shaves off more than its
// current value.
NS_ASSERTION(remainingDist >= 0, "distance values must be non-negative");
double curIntervalDist;
DebugOnly<nsresult> rv =
aValues[i].ComputeDistance(aValues[i + 1], curIntervalDist);
MOZ_ASSERT(NS_SUCCEEDED(rv),
"If we got through ComputePacedTotalDistance, we should "
"be able to recompute each sub-distance without errors");
NS_ASSERTION(curIntervalDist >= 0, "distance values must be non-negative");
// Clamp distance value at 0, just in case ComputeDistance is evil.
curIntervalDist = std::max(curIntervalDist, 0.0);
if (remainingDist >= curIntervalDist) {
remainingDist -= curIntervalDist;
} else {
// NOTE: If we get here, then curIntervalDist necessarily is not 0. Why?
// Because this clause is only hit when remainingDist < curIntervalDist,
// and if curIntervalDist were 0, that would mean remainingDist would
// have to be < 0. But that can't happen, because remainingDist (as
// a distance) is non-negative by definition.
NS_ASSERTION(curIntervalDist != 0,
"We should never get here with this set to 0...");
// We found the right spot -- an interpolated position between
// values i and i+1.
aFrom = &aValues[i];
aTo = &aValues[i + 1];
aIntervalProgress = remainingDist / curIntervalDist;
return NS_OK;
}
}
MOZ_ASSERT_UNREACHABLE(
"shouldn't complete loop & get here -- if we do, "
"then aSimpleProgress was probably out of bounds");
return NS_ERROR_FAILURE;
}
/*
* Computes the total distance to be travelled by a paced animation.
*
* Returns the total distance, or returns COMPUTE_DISTANCE_ERROR if
* our values don't support distance computation.
*/
double SMILAnimationFunction::ComputePacedTotalDistance(
const SMILValueArray& aValues) const {
NS_ASSERTION(GetCalcMode() == CALC_PACED,
"Calling paced-specific function, but not in paced mode");
double totalDistance = 0.0;
for (uint32_t i = 0; i < aValues.Length() - 1; i++) {
double tmpDist;
nsresult rv = aValues[i].ComputeDistance(aValues[i + 1], tmpDist);
if (NS_FAILED(rv)) {
return COMPUTE_DISTANCE_ERROR;
}
// Clamp distance value to 0, just in case we have an evil ComputeDistance
// implementation somewhere
MOZ_ASSERT(tmpDist >= 0.0f, "distance values must be non-negative");
tmpDist = std::max(tmpDist, 0.0);
totalDistance += tmpDist;
}
return totalDistance;
}
double SMILAnimationFunction::ScaleSimpleProgress(double aProgress,
SMILCalcMode aCalcMode) {
if (!HasAttr(nsGkAtoms::keyTimes)) return aProgress;
uint32_t numTimes = mKeyTimes.Length();
if (numTimes < 2) return aProgress;
uint32_t i = 0;
for (; i < numTimes - 2 && aProgress >= mKeyTimes[i + 1]; ++i) {
}
if (aCalcMode == CALC_DISCRETE) {
// discrete calcMode behaviour differs in that each keyTime defines the time
// from when the corresponding value is set, and therefore the last value
// needn't be 1. So check if we're in the last 'interval', that is, the
// space between the final value and 1.0.
if (aProgress >= mKeyTimes[i + 1]) {
MOZ_ASSERT(i == numTimes - 2,
"aProgress is not in range of the current interval, yet the "
"current interval is not the last bounded interval either.");
++i;
}
return (double)i / numTimes;
}
double& intervalStart = mKeyTimes[i];
double& intervalEnd = mKeyTimes[i + 1];
double intervalLength = intervalEnd - intervalStart;
if (intervalLength <= 0.0) return intervalStart;
return (i + (aProgress - intervalStart) / intervalLength) /
double(numTimes - 1);
}
double SMILAnimationFunction::ScaleIntervalProgress(double aProgress,
uint32_t aIntervalIndex) {
if (GetCalcMode() != CALC_SPLINE) return aProgress;
if (!HasAttr(nsGkAtoms::keySplines)) return aProgress;
MOZ_ASSERT(aIntervalIndex < mKeySplines.Length(), "Invalid interval index");
SMILKeySpline const& spline = mKeySplines[aIntervalIndex];
return spline.GetSplineValue(aProgress);
}
bool SMILAnimationFunction::HasAttr(nsAtom* aAttName) const {
if (IsDisallowedAttribute(aAttName)) {
return false;
}
return mAnimationElement->HasAttr(aAttName);
}
const nsAttrValue* SMILAnimationFunction::GetAttr(nsAtom* aAttName) const {
if (IsDisallowedAttribute(aAttName)) {
return nullptr;
}
return mAnimationElement->GetParsedAttr(aAttName);
}
bool SMILAnimationFunction::GetAttr(nsAtom* aAttName,
nsAString& aResult) const {
if (IsDisallowedAttribute(aAttName)) {
return false;
}
return mAnimationElement->GetAttr(aAttName, aResult);
}
/*
* A utility function to make querying an attribute that corresponds to an
* SMILValue a little neater.
*
* @param aAttName The attribute name (in the global namespace).
* @param aSMILAttr The SMIL attribute to perform the parsing.
* @param[out] aResult The resulting SMILValue.
* @param[out] aPreventCachingOfSandwich
* If |aResult| contains dependencies on its context that
* should prevent the result of the animation sandwich from
* being cached and reused in future samples (as reported
* by SMILAttr::ValueFromString), then this outparam
* will be set to true. Otherwise it is left unmodified.
*
* Returns false if a parse error occurred, otherwise returns true.
*/
bool SMILAnimationFunction::ParseAttr(nsAtom* aAttName,
const SMILAttr& aSMILAttr,
SMILValue& aResult,
bool& aPreventCachingOfSandwich) const {
nsAutoString attValue;
if (GetAttr(aAttName, attValue)) {
nsresult rv = aSMILAttr.ValueFromString(attValue, mAnimationElement,
aResult, aPreventCachingOfSandwich);
if (NS_FAILED(rv)) return false;
}
return true;
}
/*
* SMILANIM specifies the following rules for animation function values:
*
* (1) if values is set, it overrides everything
* (2) for from/to/by animation at least to or by must be specified, from on its
* own (or nothing) is an error--which we will ignore
* (3) if both by and to are specified only to will be used, by will be ignored
* (4) if by is specified without from (by animation), forces additive behaviour
* (5) if to is specified without from (to animation), special care needs to be
* taken when compositing animation as such animations are composited last.
*
* This helper method applies these rules to fill in the values list and to set
* some internal state.
*/
nsresult SMILAnimationFunction::GetValues(const SMILAttr& aSMILAttr,
SMILValueArray& aResult) {
if (!mAnimationElement) return NS_ERROR_FAILURE;
mValueNeedsReparsingEverySample = false;
SMILValueArray result;
// If "values" is set, use it
if (HasAttr(nsGkAtoms::values)) {
nsAutoString attValue;
GetAttr(nsGkAtoms::values, attValue);
bool preventCachingOfSandwich = false;
if (!SMILParserUtils::ParseValues(attValue, mAnimationElement, aSMILAttr,
result, preventCachingOfSandwich)) {
return NS_ERROR_FAILURE;
}
if (preventCachingOfSandwich) {
mValueNeedsReparsingEverySample = true;
}
// Else try to/from/by
} else {
bool preventCachingOfSandwich = false;
bool parseOk = true;
SMILValue to, from, by;
parseOk &=
ParseAttr(nsGkAtoms::to, aSMILAttr, to, preventCachingOfSandwich);
parseOk &=
ParseAttr(nsGkAtoms::from, aSMILAttr, from, preventCachingOfSandwich);
parseOk &=
ParseAttr(nsGkAtoms::by, aSMILAttr, by, preventCachingOfSandwich);
if (preventCachingOfSandwich) {
mValueNeedsReparsingEverySample = true;
}
if (!parseOk || !result.SetCapacity(2, fallible)) {
return NS_ERROR_FAILURE;
}
// AppendElement() below must succeed, because SetCapacity() succeeded.
if (!to.IsNull()) {
if (!from.IsNull()) {
MOZ_ALWAYS_TRUE(result.AppendElement(from, fallible));
MOZ_ALWAYS_TRUE(result.AppendElement(to, fallible));
} else {
MOZ_ALWAYS_TRUE(result.AppendElement(to, fallible));
}
} else if (!by.IsNull()) {
SMILValue effectiveFrom(by.mType);
if (!from.IsNull()) effectiveFrom = from;
// Set values to 'from; from + by'
MOZ_ALWAYS_TRUE(result.AppendElement(effectiveFrom, fallible));
SMILValue effectiveTo(effectiveFrom);
if (!effectiveTo.IsNull() && NS_SUCCEEDED(effectiveTo.Add(by))) {
MOZ_ALWAYS_TRUE(result.AppendElement(effectiveTo, fallible));
} else {
// Using by-animation with non-additive type or bad base-value
return NS_ERROR_FAILURE;
}
} else {
// No values, no to, no by -- call it a day
return NS_ERROR_FAILURE;
}
}
aResult = std::move(result);
return NS_OK;
}
void SMILAnimationFunction::CheckValueListDependentAttrs(uint32_t aNumValues) {
CheckKeyTimes(aNumValues);
CheckKeySplines(aNumValues);
}
/**
* Performs checks for the keyTimes attribute required by the SMIL spec but
* which depend on other attributes and therefore needs to be updated as
* dependent attributes are set.
*/
void SMILAnimationFunction::CheckKeyTimes(uint32_t aNumValues) {
if (!HasAttr(nsGkAtoms::keyTimes)) return;
SMILCalcMode calcMode = GetCalcMode();
// attribute is ignored for calcMode = paced
if (calcMode == CALC_PACED) {
SetKeyTimesErrorFlag(false);
return;
}
uint32_t numKeyTimes = mKeyTimes.Length();
if (numKeyTimes < 1) {
// keyTimes isn't set or failed preliminary checks
SetKeyTimesErrorFlag(true);
return;
}
// no. keyTimes == no. values
// For to-animation the number of values is considered to be 2.
bool matchingNumOfValues = numKeyTimes == (IsToAnimation() ? 2 : aNumValues);
if (!matchingNumOfValues) {
SetKeyTimesErrorFlag(true);
return;
}
// first value must be 0
if (mKeyTimes[0] != 0.0) {
SetKeyTimesErrorFlag(true);
return;
}
// last value must be 1 for linear or spline calcModes
if (calcMode != CALC_DISCRETE && numKeyTimes > 1 &&
mKeyTimes.LastElement() != 1.0) {
SetKeyTimesErrorFlag(true);
return;
}
SetKeyTimesErrorFlag(false);
}
void SMILAnimationFunction::CheckKeySplines(uint32_t aNumValues) {
// attribute is ignored if calc mode is not spline
if (GetCalcMode() != CALC_SPLINE) {
SetKeySplinesErrorFlag(false);
return;
}
// calc mode is spline but the attribute is not set
if (!HasAttr(nsGkAtoms::keySplines)) {
SetKeySplinesErrorFlag(false);
return;
}
if (mKeySplines.Length() < 1) {
// keyTimes isn't set or failed preliminary checks
SetKeySplinesErrorFlag(true);
return;
}
// ignore splines if there's only one value
if (aNumValues == 1 && !IsToAnimation()) {
SetKeySplinesErrorFlag(false);
return;
}
// no. keySpline specs == no. values - 1
uint32_t splineSpecs = mKeySplines.Length();
if ((splineSpecs != aNumValues - 1 && !IsToAnimation()) ||
(IsToAnimation() && splineSpecs != 1)) {
SetKeySplinesErrorFlag(true);
return;
}
SetKeySplinesErrorFlag(false);
}
bool SMILAnimationFunction::IsValueFixedForSimpleDuration() const {
return mSimpleDuration.IsIndefinite() ||
(!mHasChanged && mPrevSampleWasSingleValueAnimation);
}
//----------------------------------------------------------------------
// Property getters
bool SMILAnimationFunction::GetAccumulate() const {
const nsAttrValue* value = GetAttr(nsGkAtoms::accumulate);
if (!value) return false;
return value->GetEnumValue();
}
bool SMILAnimationFunction::GetAdditive() const {
const nsAttrValue* value = GetAttr(nsGkAtoms::additive);
if (!value) return false;
return value->GetEnumValue();
}
SMILAnimationFunction::SMILCalcMode SMILAnimationFunction::GetCalcMode() const {
const nsAttrValue* value = GetAttr(nsGkAtoms::calcMode);
if (!value) return CALC_LINEAR;
return SMILCalcMode(value->GetEnumValue());
}
//----------------------------------------------------------------------
// Property setters / un-setters:
nsresult SMILAnimationFunction::SetAccumulate(const nsAString& aAccumulate,
nsAttrValue& aResult) {
mHasChanged = true;
bool parseResult =
aResult.ParseEnumValue(aAccumulate, sAccumulateTable, true);
SetAccumulateErrorFlag(!parseResult);
return parseResult ? NS_OK : NS_ERROR_FAILURE;
}
void SMILAnimationFunction::UnsetAccumulate() {
SetAccumulateErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetAdditive(const nsAString& aAdditive,
nsAttrValue& aResult) {
mHasChanged = true;
bool parseResult = aResult.ParseEnumValue(aAdditive, sAdditiveTable, true);
SetAdditiveErrorFlag(!parseResult);
return parseResult ? NS_OK : NS_ERROR_FAILURE;
}
void SMILAnimationFunction::UnsetAdditive() {
SetAdditiveErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetCalcMode(const nsAString& aCalcMode,
nsAttrValue& aResult) {
mHasChanged = true;
bool parseResult = aResult.ParseEnumValue(aCalcMode, sCalcModeTable, true);
SetCalcModeErrorFlag(!parseResult);
return parseResult ? NS_OK : NS_ERROR_FAILURE;
}
void SMILAnimationFunction::UnsetCalcMode() {
SetCalcModeErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetKeySplines(const nsAString& aKeySplines,
nsAttrValue& aResult) {
mKeySplines.Clear();
aResult.SetTo(aKeySplines);
mHasChanged = true;
if (!SMILParserUtils::ParseKeySplines(aKeySplines, mKeySplines)) {
mKeySplines.Clear();
return NS_ERROR_FAILURE;
}
return NS_OK;
}
void SMILAnimationFunction::UnsetKeySplines() {
mKeySplines.Clear();
SetKeySplinesErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetKeyTimes(const nsAString& aKeyTimes,
nsAttrValue& aResult) {
mKeyTimes.Clear();
aResult.SetTo(aKeyTimes);
mHasChanged = true;
if (!SMILParserUtils::ParseSemicolonDelimitedProgressList(aKeyTimes, true,
mKeyTimes)) {
mKeyTimes.Clear();
return NS_ERROR_FAILURE;
}
return NS_OK;
}
void SMILAnimationFunction::UnsetKeyTimes() {
mKeyTimes.Clear();
SetKeyTimesErrorFlag(false);
mHasChanged = true;
}
} // namespace mozilla